Ladyslippers 1: Biology

0513-dsc_0198

Critically endangered Phragmipedium fischeri in northwest Ecuador near our Dracula Reserve. Click this and any other photo to enlarge. Photo: Luis Baquero and Gabriel Iturralde.

The ladyslipper orchids are among the most distinctive and beloved plants in the world. They are an ancient group, diverging from the other orchids while dinosaurs still walked among them. But today their beautiful intricate flowers have been their undoing, as plant collectors combine with habitat destruction drive them to extinction around the world. A  recent effort by Kew Gardens to assess their conservation status worldwide has shown that 79% of the world’s slipper orchid species are either vulnerable or endangered. Though slipper orchids make up less than 2% of all orchid species, they include 37% of all critically endangered orchids.

Slipper orchids are especially vulnerable to overcollection and habitat destruction because most species have specific soil and moisture requirements. Extreme soils with very high or very low pH values are favored, and many species require constant moisture. Habitat for most species is therefore scarce and patchy even in undisturbed areas. It doesn’t take much disturbance to make these populations disappear.

The ladyslippers are instantly recognizable by their pouched flowers. Insects enter the wide mouth of the pouch and then find themselves trapped inside. The inner surfaces of the pouch are mostly smooth but there is usually a ladder made of hairs on itsinside back surface. The insect climbs this ladder, passing under the flower’s stigma and then under one of its anthers in order to escape out one of the two openings at the top of the tube. If the insect is the right size, it rubs against both the stigma and the anther as it escapes, pollinating the flower if the insect already had pollen on its back from another ladyslipper flower. The escape path is clear in this cutaway view of Phragmipedium pearcei, the slipper orchid which grows in our Rio Anzu Reserve.

TopViewstack

Top view of the “slipper” or lip of the ladyslipper orchid Phragmipedium pearcei. Lou Jost/EcoMinga.

A cross-section view of the "slipper". Lou Jost/EcoMinga.

A cross-section view of the “slipper” of Phrag. pearcei. Lou Jost/EcoMinga.

0815-dsc_0317

Cutaway view of Phrag. hirtzii. Photo: Luis Baquero and Gabriel Iturralde.

Slipper orchids have a wide variety of tricks to entice insects into their traps. Some of the most surprising tricks have only been discovered in the last few years. I’ll discuss these below as I survey the different genera of slipper orchids; we’ll see how some of these tricks have arisen independently in slipper orchids on opposite sides of the world.

OLYMPUS DIGITAL CAMERA

Cypripedium parviflorum. Photo: Lou Jost.

Many readers will be familiar with the temperate zone ladyslippers, genus Cypripedium, found throughout North America, Europe, and temperate Asia. These include the familiar Pink Ladyslipper and Yellow Ladyslipper of the US and Canada. Genetic analysis shows that this genus is the oldest branch in the ladyslipper family tree. These orchids have thin oval leaves with prominent parallel veins, a trait they share with the next-oldest branch of slipper orchids, the genus Selenipedium, which are today found only in small scattered populations in tropical and subtropical Latin America. The common ancestor of the ladyslippers probably had leaves similar to these.

img_0693

Cypripedium acaule. Photo Paul Jost.

Cypripedium and Selenipedium, like most slipper orchids, are usually pollinated by bees, wasps, or flies. Some Cypripedium ladyslippers with large slits or openings in their pouches, like the Pink Ladyslipper of the US (C. acaule, above), are pollinated by large queen Bombus bees (see Davis 1986 for observations of Pink Ladyslipper pollination). Cypripedium tibeticum in China (see photo below) is pollinated by queen bees that are not carrying provisions for their young, indicating that they had not yet established a nest. Scientists suspect that the pouch in this species imitates a mouse hole, where queen bees usually build their nests (Pemberton 2014). Several other Cypripedium species have similar morphologies so this might be a more common strategy than people have realized. Even the Pink Ladyslipper may fall into this category, though most previous workers have interpreted them as food-deceit flowers.

800px-cypripedium_tibeticumpatriciaharding_1

Flowers of Cypripedium tibeticum attract queen bees looking for nesting sites. Photo: Wikipedia.

Many Cypripedium species, especially the Chinese species, have very unusual flower morphologies that hint at strange new pollination syndromes. Perhaps the most surprising pollination strategy was recently discovered in the endangered Chinese Cypripedium fargesii. The leaves of this species are spotted blackish green, and each spot has a darker black center. They look exactly like the spots on plant leaves infected by certain fungi. The C. fargesii flower and freckled foliage fool a fly that feeds on the spores of this fungus. It falls into the trap and fertilizes the flower. Full details in “Flowers of Cypripedium fargesii (Orchidaceae) fool flat-footed flies (Platypezidae) by faking fungus-infected foliage”

cypripedium_fargesii_orchi_294142

Cypripedium fargesii has black-spotted leaves which attract fungus-feeding flies. Photo: Wikipedia.

Besides these genera of slipper orchids with thin leaves showing prominent parallel ridges and valleys (“plicate-leaved” genera), there are three genera of slipper orchids with thick smooth leathery leaves whose veins (except for a sharp midvein where the leaf is folded) are not visible (“conduplicate-leaved” genera). These are the Asian genus Paphiopedilum and the closely-related Latin American genera Phragmipedium and Mexipedium. These three genera share a common ancestor that diverged from the plicate-leaved Cypripedium and Selenipedium about 60 million years ago; the New and Old World conduplicate-leaved slipper orchids diverged from each other around 23 million years ago. Some of the species in these genera have evolved pollination strategies similar to those of Cypripedium, but many of them have evolved novel strategies that have no parallel in the temperate zone.

I’ve written once before about the pollination strategy of Phragmipedium pearcei in our Rio Anzu Reserve. The pouch has white flaps at the top, and these are dotted with little fake green aphids and some light brown blobs that might be fake aphid wings. Female hoverflies hunt aphid colonies and lay their eggs on them; their larvae will devour the aphids. These hoverflies try to lay their eggs on the fake aphids and bounce off the white flaps into the open pouch (Pemberton 2014), where they are manipulated by the orchid, effecting pollination (see photos of this species at the beginning of this post).

ppearcei

Phragmipedium pearcei has green fake aphids on the white flaps at the top of its pouch. Syrphid flies have larvae that eat aphids, so the females land on the lip to lay eggs in the fake aphid colony. When they land they slipo and fall into the pouch. Photo: Nigel Simpson.

staminode

The staminode above the “slipper” or lip of Phrag. pearcei. At this magnification the green spots on the lip begin to show their true complexity. Lou Jost/EcoMinga.

Many other tropical American Phragmipedium species have these same green dots and are certainly pollinated in the same way. Our Ecuadorian Phrag. boisserianum, Phrag. caudatum, Phrag. longifolium (which grows in our Dracula Reserve), and Phrag. wallisii, among others, belong to this group. Perhaps the endangered Phrag. hirtzii (which might also grow in our Dracula Reserve) has a similar strategy.

2009_05030173

Phrag. boisserianum (var. czerwiakowianum?) Photo: Lou Jost.

0734-dsc_0273

Phrag. hirtzii. Photo: Luis Baquero and Gabriel Iturralde.

Curiously the Old World genus Paphiopedilum also has many species with a broadly similar floral structure. Some of them, like Paph. venustum below, have some raised shiny yellow dots on the upper flaps of the pouch, and these may imitate scale insects. The green-spotted staminode (the top flap that covers the anther and stigma) may also be imitating aphids.

p1020353

Paph. venustum. Photo: Lou Jost.

OLYMPUS DIGITAL CAMERA

Paph. venustum. Photo: Lou Jost.

 

OLYMPUS DIGITAL CAMERA

Paph. venustum pouch detail. Photo: Lou Jost.

Likewise there are both New World Phragmipedium species and Old World Paphiopedilum species that have evolved another flower form, round-petalled white and pink flowers with yellow staminodes whose function is not yet understood. Phragmipedium schlimii and the critically endangered Phrag. fischeri are two Ecuadorian examples of this syndrome. The critically endangered Asian Paphiopedilum delenatii has evolved a strikingly similar flower. The North American Cypripedium reginae flower is also broadly similar. Maybe they all share a common strategy, perhaps luring bees looking for food, but we don’t really know.

_1060522

Phragmipedium schlimii. Photo: Lou Jost.

0520-dsc_0204

Phrag. fischeri. Photo: Luis Baquero and Gabriel Iturralde.

_dsc0046

Critically endangered Asian Paphiopedilum delanatii has the same general pattern as American Phragmipedium fischeri and Phrag, schlimmii. Photo: Lou Jost.

Cypripedium reginae of North America shares the same pattern as Asian Paphiopedilum delenatii and South American Phragmipedium schlimii and Phrag. fischeri. Photo: WIkipedia.

pbessae2

Ecuadorian and Peruvian Phragmipedium bessae is the most brilliantly-colored slipper orchid. Photo: Lou Jost.

The brightly-colored Phragmipedium bessae from southern Ecuador and northern Peru breaks all the rules for this genus. Early speculations about its pollinator (butterflies and hummingbirds were suggested) were poorly concieved and completely wrong. Sometimes our imagination is just too limited. Also, it is difficult for us to take into account the huge differences between insect color vision and our own. It now appears that this bright Phragmipedium attracts a wasp that parasitizes larvae of large beetles (Pemberton 2014). No one has any idea why they are attracted to this flower, though. We also do not know what pollinates the newly discovered Phragmipedium kovachii, the largest and most spectacular member of the genus, which has already been ruthlessly stripped from almost all accessible sites in its limited range in northern Peru.

_dsc0248

This is a cultivated hybrid of Phrag. schlimmii and Phrag. kovachii. Photo: Lou Jost.

There is one oddball Phragmipedium, quite common on rocky outcrops near our Banos-area reserves, which is self-pollinated. This species is derived from something like Phrag. wallisii or Phrag. caudatum, which are similar to our Phrag. pearcei but with much longer petals that hang down to the ground. In Phrag. lindenii a mutation has affected the symmetry of the flower. The pouch was converted to an ordinary petal like the other two (the pouch is also a petal, but a highly modified one). In a normal Phragmipedium there is an anther at the base of each of the two normal petals. The mutation in Phrag. lindenii not only adds a third normal petal, it also adds an anther at its base, as in the other two petals. But this third anther grows directly into the stigma, thus fertilizing the flower automatically. Every flower always sets seed. This is a very successful short-term strategy compared to the normal strategy of waiting to attract and fool a pollinator. Most normal slipper orchid flowers rarely set seed.

_dsc0013

Phragmipedium lindenii in the upper Rio Pastaza watershed. Photo: Lou Jost.

dscf6670

View of Phrag. lindenii with left petal removed., The left anther and the mutant third anther are visible.; the latter grows directly into the stigma, fertilizing the flower. Photo: Lou Jost.

phraglindenii6

Phragmipedium lindenii. Painting by Lou Jost.

The ancestor of Phragmipedium lindenii was similar to this Phragmipedium caudatum. Photo: Wikipedia.

The ancestor of Phragmipedium lindenii was similar to this Phragmipedium caudatum. Photo: Wikipedia.

So why aren’t all slipper orchids self-pollinating? Cross-pollination can quickly spread beneficial mutations throughout a population, and can bring together different favorable mutations that arose in different individuals, so a cross-pollinating species will be able to adapt to changing conditions more rapidly than a strictly self-pollinating species. So perhaps these self-pollinating species briefly burst onto the scene and then disappear, while cross-pollinating species have long runs.

The Asian Paphiopedilum slipper orchids are very diverse, and many of them have flowers whose pollinators are complete mysteries. Here are some:

paphiopedilum_argus_16990043526_-_cropped

Paphiopedilum argus. Photo: Wikipedia.

paphiopedilum_rothschildianum_orchi_108

Critically endangered Paphiopedilum rothschildianum. Photo: Wikipedia.

paphiopedilum_micranthum_orchi_01

Critically endangered Paphiopedilum micranthum. Photo: Wikipedia.

paphiopedilum_hookerii

Paph. hookerii. Photo: Wikipedia.

paphiopedilum_dayanum

Critically endangered Paph. dayanum. Photo: Wikipedia.

paphiopedilum_charlesworthii_orchi_01

Paphiopedilum charlesworthii. Photo: Wikipedia.

paphiopedilum_bullenianum_orchi_023

Paphiopedilum bullenianum. Photo: Wikipedia.

paphiopedilum_armeniacum_orchi_02

Paphiopedilum armeniacum. Photo: Wikipedia.

paphiopedilum_acmodontum

Paphiopedilum acmodontum. Photo: Wikipedia.

It is easy to see why people fall in love with these amazing plants and become passionate about them. I still remember being entranced when, as a teenager, I found my first wild ladyslippers in Wisconsin. That passion people to try to protect wild populations. Some of the strongest support for our foundation’s efforts to conserve wild orchids comes from people who genuinely love these plants and who grow them responsibly.The Orchid Conservation Alliance is a great example of this. The Slipper Orchid Alliance, the Quito Orchid Society, and the Quito Botanical Garden are other groups with members who are passionate about conserving orchids in the wild and who have helped us do our conservation work.

Remember, horticulturalists who really love these plants make sure they only buy laboratory-grown individuals!

In Part 2 of this series we will announce our plan to protect some of Ecuador’s most endangered slipper orchids.

Lou Jost, EcoMinga Foundation

 

 

 

Carnegie Airborne Observatory visits our area

mosaic

Carnegie Airborne Observatory image of rainforest trees; different colors represent different spectral fingerprints. Click picture to enlarge. Image: Carnegie Institution for Science.

The Carnegie Institution for Science is a unique private organization devoted to advanced study of the earth, life, and the universe. The pioneer cosmologist Edwin Hubble (“Hubble constant”), geologist Charles Richter (“Richter scale”), geneticist Barbara McClintock, and many Nobel laureates from several different disciplines are or were Carnegie investigators. The institution has instruments orbiting Mercury, is a lead partner in constructing the world’s biggest telescope in Chile, and has one of the world’s most sophisticated ecological monitoring devices, the Carnegie Aerial Observatory (CAO). This is a two-engine 20-passenger plane that Greg Asner and colleagues has fitted with millions of dollars worth of specially-designed lasers and spectrometers. It can sample hundreds of thousands of hectares of forest per day, using LIDAR to build a 3-dimensional model of the forest’s trees with 8 cm resolution. At the same time as it acquires LIDAR data, it also samples the spectral properties of light reflected from the vegetation, gathering reflectance information at hundreds of different wavelengths (colors). This spectral data gives information about the chemical and physical properties of the leaves, and also provides a spectral fingerprint that can later be matched to field-collected spectral fingerprints from known species of trees. Some  trees have such distinctive fingerprints that they can be identified to species with this data; more commonly, they can be identified to genus, though sometimes only to family. The detailed structural, chemical and taxonomic data acquired by the CAO would be impossible to gather at the landscape level by any other method, and Greg’s work is dramatically expanding the range of questions that ecologists can ask about forest ecosystems.

mos2

Carnegie aerial observatory rainforest image: 3-D Lidar combined with spectral signal. Image: Carnegie Institution for Science.

Last year Greg had planned to use our mosaic of forests as reference sites for a study of Andean forests on different geological substrates and elevations.  Greg and his partner Robin Martin visited our Rio Zunac Reserve, his flight plans got approved by the Ecuadorian authorities, and everything seemed ready to go, but in the end he was not allowed to bring the plane into the country. This year, however, Greg was able to bring the plane in for a more modest ten-day study of Amazonia. The plane’s home for those ten days was the military base in Shell, a town in the upper Rio Pastaza watershed near our Rio Anzu Reserve. One of the CAO’s flight transects covered a two-kilometer wide strip from west to east (high to low) through our area, perhaps including parts of up to four of our reserves. This will be a very valuable data set that will teach us a great deal about the structure and diversity of these forests. However, it will take about a year to fully process the data, so we’ll have to be patient.

img_6374sm

The Carnegie Airborne Observatory parked at the Shell military base. Our reserves are in the mountains in the background. Click picture to enlarge. Photo: Matt Scott.

The president of the Carnegie Institution for Science, Matt Scott, is a well-known geneticist and serious photographer. He came t0 Ecuador last month to fly with Greg, but first he wanted to visit some of our reserves. Our endangered Black-and-chestnut Eagles (Spizaetus isidori) were nesting again in our Rio Zunac Reserve after last year’s tragic nest failure, so this was a once-in-a-lifetime opportunity to observe the species as it went about its business.

I picked him up in the Quito airport. The trip from Quito to Banos was picturesque as always. The glacier of Cotopaxi was covered in a layer of fresh volcanic ash, and small puffs of ash and vapor were still rising up from the crater as we drove past it.

_mps4060sm

Cotopaxi’s glaciers covered in fresh ash. Click picture to enlarge. Photo: Matt Scott.

 

_mps4097sm

Close to sunset as we neared Banos after passing through a rainstorm. Click picture to enlarge. Photo: Matt Scott.

The next day we had an appointment with the Black-and-chestnut Eagles at 10am-11am. Our guards told us the parents  usually brought prey to the baby at that time, but were otherwise rarely seen around the nest. The nest is about 3-4 hours away from the road, after a forty minute drive from Banos, so we had to get up early and rush out there. It was hard to keep up  a good pace, since beautiful things kept distracting us. Still, we managed to get to the nest observation spot at almost exactly 11:00, and sure enough, there was the adult in the nest, along with the chick and something dead. The adult flew off almost immediately but shortly returned to feed on the prey item while the sated chick slept. The other adult was also nearby and both called frequently. We spent an hour watching them. It was a wonderful thing to see.

_mps7152sm

This was the view when Matt got to my house to start our trip to the Rio Zunac. Volcan Tungurahua with a lenticular cloud against a crystal sky, a great way to start the day. Click picture to enlarge. Photo: Matt Scott.

_mps7199sm

Morning fog over the Rio Pastaza. Click picture to enlarge. Photo: Matt Scott.

_mps7327

Black-and-chestnut Eagle (Spizaetus isidori) at its nest in our Rio Zunac Reserve. Photo: Matt Scott.

_1060613

We saw several Highland Motmots. Photo: Lou Jost/EcoMinga.

_mps7416sm

Torrent Ducks on the Rio Zunac distracted us throughout the day. Click picture to enlarge. Photo: Matt Scott.

_1060699

We found this crazy katydid at the end of our walk. Click picture to enlarge. Photo: Lou Jost/EcoMinga.

_1060734

Butterflies and hesperids taking salts from the sand along the Rio Zunac. Photo: Lou Jost/EcoMinga.

_mps7498sm

Matt chills out in the Rio Zunac after our hike. Click picture to enlarge. Photo: Lou Jost.

 

The next day we went to our Rio Anzu Reserve near the Shell airport and the CAO. That reserve is not very rich in big stuff, but there are so many interesting small things that it is hard to take ten steps without stopping for photos. We eventually got to the Rio Anzu river and the magnificent fossil-bearing limestone formations capped with ladyslipper orchids (Phragmipedium pearcei). Though it was getting late, Matt asked to stay longer. I always like to hear that from a visitor!!

_1060900

Matt photographing the limestone. Click picture to enlarge. Photo: Lou Jost/EcoMinga.

_mps7785sm

The limestone formations along the Rio Anzu, covered with orchids. Click picture to enlarge. Photo: Matt Scott.

_mps7804sm

Phragmipedium pearcei, a ladyslipper orchid, on the limestone. Click picture to enlarge. Photo: Matt Scott.

_mps7644

Riodinid butterfly in the Rio Anzu Reserve. Click picture to enlarge. Photo: Matt Scott.

_mps7946sm

Large hairy caterpillar. Click picture to enlarge. Photo: Matt Scott.

_mps7763sm

Me in bamboo forest along the Rio Anzu. Click picture to enlarge. Photo: Matt Scott.

Then we went to the military base to see the CAO. Security was tight and the military were not eager to let a pair of muddy rubber-booted gringos walk through their installations. Nevertheless we were able to talk our way through the multiple layers of officials who scrutinized us. But we didn’t want to ruffle any feathers so when we finally got to the plane, we just took a quick look at it and went back (still under military escort, but actually a very friendly one).

_mps7990sm

CAO at the military base. Click picture to enlarge. Photo: Matt Scott.

By the time we got to Greg and Robin’s hotel in nearby Puyo it was already dark. Greg was sitting at a table outside working on maps in his laptop, and he showed me the transects he had flown so far. I went back to Banos that night but Matt stayed and got to fly in the CAO over the following days. Lucky man!

img_6321sm

Matt (left) and Greg happy to be in the air. Click picture to enlarge. Photo: Matt Scott.

_mps8569sm

The Rio Pastaza broadens and meanders as it leaves our mountains and enters Amazonia. Click picture to enlarge. Photo: Matt Scott.

 

_mps8422sm

The Amazon basin from the CAO. Click picture to enlarge. Photo: Matt Scott.

 

img_6317sm

More of the Amazon basin from the CAO. Click picture to enlarge. Photo: Matt Scott.

Matt, thanks very much for your visit! It was an honor for us to show you our forests.

Lou Jost

Fundacion EcoMinga

 

 

Second trip to our Rio Machay Reserve: Orchids, magnolias, tortoise beetles, and toxic trees

Chrysomelid beetle feet in action.  Video: Lou Jost

Chrysomelid beetle feet in action. Video: Lou Jost

A few weeks ago I visited the east ridge of our new Rio Machay Reserve, and found lots of interesting things. I also seemed to get through the visit without touching any Toxicondendron trees (same genus as poison ivy but more virulent), which had caused grave problems to my students and I a decade ago. Encouraged by this, I visited again last week, to search for new Magnolia species and interesting, biogeographically-informative orchids.

I picked a perfect almost-rainless day. The forest was beautiful in the sun, with lots of butterflies and other insects. Right at the start, at about 1600m, I found another beautiful chrysomelid beetle from the tribe Cassidini, a “tortoise beetle” similar to the fancy species I wrote about recently (“An insect that uses its own feces to build a statue of an insect or spider on its back”). This one had a more colorful pattern, which had no obvious function.

The beetle's back pattern. Note the transparent sections of its shell. Photo: Lou Jost/EcoMinga.

The beetle’s back pattern. Note the transparent sections of its shell. Photo: Lou Jost/EcoMinga.

The feet of these Cassidinae beetles are very unusual, with mop-like pads of long oily flattened hairs that stick tightly to even the smoothest surface. When the beetle feels threatened, it sticks tightly to its leaf with these fancy feet, and pulls its shell tight against the leaf surface. The shell extends beyond the feet so there is no place to get a grip on this slippery dome. It can hang on against a force 100 times greater than its body weight.

I’ve been wondering how the beetle detaches the sticky feet from the surface when it wants to walk. From looking at the feet of the previous species, I inferred that the two long claws between the pads could act as a lever to separate the pads from the leaf surface. However, I made that inference based on microscopic observations of the dead beetle’s claws. This new beetle gave me the chance to observe the feet in action.

First I made some microphotos of the feet. The beetle sometimes stood still long enough to take the several hundred photos required to make each final image, though this required a lot of luck and patience. These feet had bigger secondary pads than those of the other species. Then I made a couple of videos of the feet in action. They are too big to include here, but I include a small reduced gif above, and I may put an additional one in a separate post, to keep this post from getting too heavy.

The full-sized video clearly shows that my earlier inference was wrong. The claws aren’t being used as a lever, at least not in the way that I imagined. The feet also pivot freely at times, as if the pads are not always sticky, though sliding might be easy since the surface tension isn’t broken (it is easy to slide a wet piece of glass over another piece of glass, but hard to pull them apart). Some articles had suggested that the beetle can produce the sticky liquid quickly when needed, and that the pads were normally not so sticky. Other people were skeptical of this, and the permanently-wet pads of the other species I photographed suggested that they were always sticky. I still don’t really know.

A miniature woodpecker, Lafresnaye's Piculet, just 9 cm long, smaller than some cigarettes! Photo: Lou Jost/EcoMinga.

A miniature woodpecker, Lafresnaye’s Piculet, just 9 cm long, smaller than some cigarettes! Photo: Lou Jost/EcoMinga.

Also early in my climb I saw a pair of adorable Lafresnaye’s Piculets, tiny little woodpeckers that specialize in pecking the thin terminal twigs of branches where bigger woodpeckers can’t go.

This orchid, Sphyrastylis dalstromii, has unusual leaves and flowers. Photo: Lou Jost/EcoMinga.

This orchid, Sphyrastylis dalstromii, has unusual leaves and flowers. Photo: Lou Jost/EcoMinga.

An unusual orchid, Sphyrostylis dalstromii, first discovered by my friend Stig Dalstrom, hung down from a trunk on the side of the trail. These plants have iris-like dagger-shaped leaves and the stem grows continuously from its tip, unlike most New World orchids which make successive short growths from a rhizome.

Later in my climb to the magnolia trees we’d recently discovered, I found one of the most spectacular Pleurothallis orchids in the world, P. (Elongatia) excelsa. I’d only seen this once before in my life. Most species in this artificial genus have tiny, dull flowers. John Jearrard writes this about the genus: “There is a strange fascination to Pleurothallis which are some of the dullest flowering plants imaginable. There are hundreds of them, actually more than 1000 at present but the number varies as more are found. The number reduces every time a botanist decides that a group aren’t really dull enough to belong, and shunts them off into a new genus. They are confusing, they are dull and they are fascinating.”

This species breaks all the rules of this group of orchids. It is huge, imposing, and spectacular. The plant is several feet tall and the pendant flower stalk is also several feet long. The flowers are enormous compared to the usual species. This plant was apparently not known from Ecuador until I found it here in the 1990’s. It was a real pleasure to see it again. (In a future post I might talk about its proper generic classification, which turns out to be very complicated. I think it is best placed in Elongatia, not Stelis, and certainly not Pleurothallis in any sense of that genus. See my article here for an introduction to problems of the old genus Pleurothallis, and see Wilson et al and Karremans for more technical discussion on the position of this species and its close relatives like “P.” restrepiodes.)

Click here to enlarge.  The mysterious Magnolia tree I found here. I cleared out some of the bamboo which was beginning to overtake it. Some day we may see it flower so we can figure out what it is. Meanwhile we will include it in the laboratory Magnolia propagation project we are doing in collaboration with the Jardin Botanico de Quito and the Universidad Estatal Amazonica, financed by a grant from Botanical Gardens Conservation International. Photo: Lou Jost/EcoMinga.

Click here to enlarge. The mysterious Magnolia tree I found here. I cleared out some of the bamboo which was beginning to overtake it. Some day we may see it flower so we can figure out what it is. Meanwhile we will include it in the laboratory Magnolia propagation project we are doing in collaboration with the Jardin Botanico de Quito and the Universidad Estatal Amazonica, financed by a grant from Botanical Gardens Conservation International. Photo: Lou Jost/EcoMinga.

Above that, at 2200m, I found a couple more of the giant-leaved mystery Magnolia trees I had come for. These have much bigger and more tapering leaves than the adult plants of our two new species of Magnolias from our nearby Rio Zunac Reserve. I strongly suspect they are different species, and hence probably new to science. [Note added April 30: Dr Antonio Vazquez, magnolia expert, and Eduardo Calderon, who has grown many Colombian magnolia species from seed, both say that juvenile magnolia trees often have much bigger leaves than adults, so I now think these forms are probably juveniles of the smaller-leaved species that Juan Pablo Reyes and our caretakers found on their visit here a few weeks ago. That may or may not be M. vargasiana, one of the new species from the Rio Zunac Reserve.] However w We do not know the juveniles of the new Magnolia species from the Rio Zunac, so we cannot rule out the possibility that one of those species has giant leaves when the tree is young. I could find no flowers, which would have settled the issue.


On my way down I was accosted by two Black-billed Mountain-Toucans (Andigena nigrirostris). These big toucans are always brave and curious in wild areas where nobody goes. These two came very close at eye level, rattling their beaks at me. But they were moving around too fast for good pictures. I got a few shots of one of them behind a tree. I include a better picture recently taken by Fausto Recalde in one of our other reserves. The Andigena toucans are among the most beautiful of the world’s toucans; besides this species, we are lucky to have two others in our reserves.

It was a wonderful day, but the next day I felt sick. The day after, I felt worse, and saw why. My right arm and the right side of my face was covered with a red rash. By the third day my right eye was swelling shut. I knew immediately what was wrong…

This time the toxic tree Toxicodendron, whose local name is "alubillo", got me again. This is the earliest stage. If left untreated my whole body would be covered with bursting yellow pustules in a week or two....Photo: Lou Jost/EcoMinga.

This time the toxic tree Toxicodendron, whose local name is “alubillo”, got me again. This is the earliest stage. If left untreated my whole body would be covered with bursting yellow pustules in a week or two….Photo: Lou Jost/EcoMinga.

In my post from last week about this trail, I wrote “From 1996 to about 2004 I spent a lot of time exploring the western arm of the horseshoe, but only visited the eastern arm once or twice. A poisonous tree called Toxicodendron (same genus as American poison ivy) is common near the beginning of the trail up the eastern arm, and I developed a nasty allergy to it. A week after my last trip there (2004?), my eyes were swollen shut and yellow liquid dripped from my earlobes, and I nearly clawed my skin off from itching…. Since then I thought it best to avoid that ridge.”

I did not have problems after my trip two weeks ago. but this time, in spite of my care, I had apparently brushed against the dreaded Toxicodendron tree known here as Alubillo, which I had worried about in my earlier post. I knew that by next week, my whole body would be covered with this rash, and by the week after that, my eyes would be swollen shut and yellow liquid would be dripping from my ears. I don’t know what would happen after that— by the fourth week I had found a doctor who knew the cure (after many stupid doctors who prescribed nonsense). So I have now begun taking that cure, prednisone, and already I am better. (Added note: My friends who are reading this, please don’t worry about me, this is a common routine for me…)

[AApril 30: Photos of the Toxicodendron added below. Note to self: Learn to avoid!!]

Lou Jost
EcoMinga Foundation

Exploring the “Forests in the Sky”: our new Rio Machay Reserve, east ridge

Our new Rio Machay Reserve near Banos and the Rio Pastaza protects Cerro Mayordomo, in the Llanganates mountains of the eastern Andes of Ecuador. Cerro Mayordomo is shaped like a horseshoe with the open end facing south; the Rio Machay runs through the center of the “horseshoe”. From 1996 to about 2004 I spent a lot of time exploring the western arm of the horseshoe, but only visited the eastern arm once or twice. A poisonous tree called Toxicodendron (same genus as American poison ivy) is common near the beginning of the trail up the eastern arm, and I developed a nasty allergy to it. A week after my last trip there (2004?), my eyes were swollen shut and yellow liquid dripped from my earlobes, and I nearly clawed my skin off from itching…. Since then I thought it best to avoid that ridge. (Note: I now know there is a simple cure: Prednisone, which cures me completely in less than half an hour!)

Now that we own it, we’ve begun to explore it once more, with eyes that have been trained by ten additional years of exposure to interesting plants in our area. Juan Pablo Reyes, Fausto Recalde, and Luis Recalde went up last week, and came back safe and sound without developing rashes. They went as far as they could in one day, clearing the old trail from 1500m to 2200m. They stopped for lunch at the highest point. As Luis was eating he looked at the ground and noticed a fallen bract, which to almost anyone else would have been completely meaningless. But Luis shouted “Magnolia!” and he was right. It was a piece of a Magnolia flower that had fallen from the canopy. He had recognized it because he had worked many weeks with Dr Antonio Vazquez and students, studying two newly discovered Magnolia tree species in the Rio Zunac Reserve in the Cordillera Abitagua, just 15 km to the east of this ridge. Luis, Fausto, and Juan Pablo looked around and found two Magnolia trees near the trail. Here is their photo of the leaves and flower bud:

This was a remarkable discovery. The local people here do not know these plants (except for our men); they have no local name. Apparently Magnolias have always been very rare here. I sent pictures of these leaves to Dr Vazquez, who said it was Magnolia vargasiana, one of the two new species discovered in the Rio Zunac Reserve. Luis, however, felt the flower bud was much smaller than that species. Perhaps the flower bud was very immature.

Fausto Recalde now has a great eye for the orchid genus Dracula, and he found some there near the lunch spot. This was also exciting news for us, as we had never found any Dracula species in the Banos area on any of the mountains except the easternmost one, the Cordillera Abitagua. Unfortunately he couldn’t find any flowers, so we didn’t know which species it was.

The three men also found one of my favorite orchid species, Masdevallia teagueii. Up to now this plant had only been found in our area on the Cordillera Abitagua and other mountains to the east. This strange flower has a trap mechanism like a Venus’ Flytrap; when a small Drosophila-like fly lands on the lip, the lip of the flower instantly snaps shut, trapping the fly. In order to escape, the fly has to squeeze past the stigma and anther of the orchid, thus ensuring pollination (if the fly had pollinia previously attached to it) and deposition of its own pollinia (which are waxy chunks of pollen attached to sticky plunger-like pads that glue themselves to the insect). After twenty minutes the lip opens and the flower can do it again.

There are very few orchids that have active lips like this. Three other orchid genera in our area have independently evolved this ability: Acostaea, Porroglossum, and Condylago (all in the Pleurothallidinae, the same subtribe as Masdevallia teagueii). Incredibly, each of the four genera evolved a completely different engineering solution to accomplish the motion. In Masdevallia teagueii the heavy lip is attached to the rest of the flower by a thin concave strip of tissue. When stimulated, it instantly changes concavity, flipping the lip upward. The stimulus signal may be electrical.

I discovered the sensitivity of the lip in the 1990s. Prior to that discovery the plant seemed like a normal Masdevallia, where it had been placed originally. But after the discovery of this extraordinary snapping ability, and the unusual structures underlying it, the world expert in these orchids, Dr Carl Luer, decided to establish a new genus for this plant. He named the genus after me, “Jostia“. But later molecular phylogenies based on DNA showed that this plant was embedded in the same branch of the orchid family tree as the normal Masdevallia species. So “my” genus got sunk and the plant is now once again called Masdevallia teagueii. (By the way, the specific name honors the same Walter Teague who was honored by the genus Teagueia, which I have discussed extensively elsewhere.)

Of course I wanted to see all these exciting finds of Juan Pablo, Luis, and Fausto. I waited a few days to make sure the rangers and Juan Pablo didn’t swell up and drip yellow liquid from their ears. They didn’t, so I dared to go up myself, especially to try to find a flower of the Magnolia, and to look more closely at the Dracula plants. I made an extra effort not to touch the trunks of any tree along the trail, to avoid the poison tree. The climb was more difficult than I had remembered from twenty years ago….I hate getting old!!!….but I did make it to the point where the earlier group had turned around. I was pleased to find one of the species I had discovered on the west arm of Mayordomo decades earlier, Lepanthes aprina. It also turns up on Cerro Candelaria to the south (same climate), but not on the cordilleras to the east (wetter) or to the west (drier). I also found Lepanthes jackinpyxa (latin for “jack-in-the-box”, named by Carl Luer), which I had never seen before on this mountain. It was previously known in this area only from the Cordillera Abitagua, where it grows in the same forest as Magnolia vargasiana.

Lepanthes aprina, endemic to the second line of mountains facing Amazonia in our area, first discovered in what is now our Rio Machay Reserve. The name "aprina" means "tusks". Photo: Lou Jost/EcoMinga.

Lepanthes aprina, endemic to the second line of mountains facing Amazonia in our area, first discovered in what is now our Rio Machay Reserve. The name “aprina” means “tusks”. Photo: Lou Jost/EcoMinga.

Lepanthes jackinpyxa in the Rio Machay Reserve. Photo: Lou Jost/EcoMinga.

Lepanthes jackinpyxa in the Rio Machay Reserve. Photo: Lou Jost/EcoMinga.

I tried hard to find the Magnolia that our rangers had found, but couldn’t locate it in the heavy rain that struck just then (meanwhile Banos itself was sunny all day). As I was leaving, disappointed, something subconscious called my attention to a tree some distance from the trail. It turned out to be a Magnolia! But it was very different from the one the guards had found. This one had much longer, tapered leaves, and long slender petioles. I really don’t know why I went to look at it—that was the only tree of the thousands I passed that day which caught my eye like that. Dr Vazquez thinks that my individual may be a juvenile leaf of M. vargasiana, or an undescribed species. It had no flower buds. I’ll have to go back.

Then I found some Dracula plants! It looked like there might be two species here, based on the leaf shapes. I examined many plants until I managed to find a flower. It was Dracula fuligifera, which had always been considered a Cordillera Abitagua endemic. Very exciting!

These recent discoveries reinforced my impression of twenty years ago that for orchids, this eastern ridge of Cerro Mayordomo is a transition zone between the flora of the eastern Cordillera Abitagua and flora of the more westerly main body of the Andes. It will be exciting to push these explorations upwards to the top of Mayordomo at 3400m. Maybe much of the as-yet-unknown flora of the high Cordillera Abitagua will also be found on the eastern high ridges of Cerro Mayordomo, as we’ve just seen at middle elevations. We could get to the top of Cerro Mayordomo and back on a five-day camping trip, I think. This is far easier than getting to similar elevations on the Cordillera Abitagua (summit at 3200m). That would take two weeks or more, if we started at our Rio Zunac station. We look forward to trying this.

The World Land Trust still needs to raise some of the funds to make our final payment on the Rio Machay Reserve. Help them if you can!

Lou Jost
EcoMinga Foundation

More info:
https://ecomingafoundation.wordpress.com/2015/10/04/world-land-trust-big-match-campaign-for-ecominga-forests-in-the-sky-october-1-to-15/
https://ecomingafoundation.wordpress.com/2015/11/19/first-piece-of-the-forests-in-the-sky-is-now-protected/
https://ecomingafoundation.wordpress.com/2016/03/05/landscape-level-conservation-becomes-a-reality-for-ecominga/

A military footnote: A US military manual for soldiers in Ecuador warns of the Toxicodendron tree: “Plants most important to military personnel are Toxicodendron spp. and Anacardium occidentale (cashew nut)…These are abundant at many CONUS installations, often causing skin reactions that require soldiers to be placed “on quarters” or occasionally in the hospital. The seriousness of lesions caused by poison ivy or poison oak is exacerbated in the tropics…”

Orchid Conservation Alliance site visit to our Dracula Reserve, supplementary photos

My last post on the Orchid Conservation Alliance visit to our Dracula Reserve was quite long, so I had to leave out some photos. Here I will add a few more from that trip:

Northwest Ecuador is the home of Anthurium andreanum, the main wild ancestor of all the anthurium hybrids sold today around the world for cut flowers.

Anthurium andreanum, the main wild ancestor of all cut-flower anthurium hybrids, growing wild here. Photo: Lou Jost/EcoMinga.

Heliconia species. Photo: Lou Jost/EcoMinga.

Heliconia species. Photo: Lou Jost/EcoMinga.

The forest in the fog, behind the foreground ridge, is our newest purchase for the Dracula Reserve. Photo: Lou Jost/EcoMinga.

The forest in the fog, behind the foreground ridge, is our newest purchase for the Dracula Reserve. Photo: Lou Jost/EcoMinga.

Sobralia bimaculata was common on roadbanks and in forest clearings. Photo: Lou Jost/EcoMinga.

Sobralia bimaculata was common on roadbanks and in forest clearings. Photo: Lou Jost/EcoMinga.

Scaphosepalum cf swertifolium, an orchid. Photo: Lou Jost/EcoMinga.

Scaphosepalum cf swertifolium, an orchid. Photo: Lou Jost/EcoMinga.

Lou Jost
EcoMinga Foundation