Terrifying beauty once again

An hour or so after the main explosion. The setting sun and thousands of tons of sulfur dioxide gas turn the vapor clouds yellow-orange, while the thick ash clouds remain black. Photo: Lou Jost

An hour or so after the main explosion. The setting sun and thousands of tons of sulfur dioxide gas turn the vapor clouds yellow-orange, while the thick ash clouds remain black. Photo: Lou Jost

A month ago today our volcano, Tungurahua, exploded with so much energy the debris reached 47,000 ft into the sky. It was one of the most magnificent events in its recent history. And unlike the July event, which was invisible to us because of low clouds, this eruption pierced a crystal blue sky, near sunset. Everything came together to make this one of the most beautiful yet terrifying scenes imaginable.

The first moments of the blast. The ground shook below me as I took this. Photo: Lou Jost

The first moments of the blast. The ground shook below me as I took this. Photo: Lou Jost

The ash cloud from this eruption was especially thick. It fell as far away as Quito a hundred miles to the north, and Cuenca several hundred miles to the south, closing the Cuenca airport. Our reserves once again received only a light dusting of ash, as most of it flew high above our heads. I watched from my house five miles from the crater, and got no ash at all. Juan Pablo Reyes, our reserve manager, was on the next mountain to the east, Chamana, where we have a small reserve, and where he has his own property (which he also runs as a reserve). From there he witnessed the glowing mouth of the volcano as the sun set.

From the Chamana ridge just east of the volcano, the lava still glows as night falls. Photo: Juan Pablo Reyes.

From the Chamana ridge just east of the volcano, the lava still glows as night falls. Photo: Juan Pablo Reyes.

Spectacular though it was from the perspective of a singe human lifetime, this eruption was just a burp, from a geological perspective. At least twice in geological history this volcano has completely self-destructed: once about 3000 years ago, and once about 75000 years ago. Such massive eruptions would have destroyed all life on the upper parts of the volcano, probably down to 2500-3000m (the current volcano summit is at 5020m). Since evolution takes longer than that to make a new species, we’d expect there should not be species of plants strictly endemic to the high parts of the volcano. Nevertheless a few new species had been discovered there. One, discovered in 1984 by Alex Hirtz, was named after the volcano: Lepanthes tungurahuae. As expected, I eventually found it at high elevations on many of the surrounding mountains, and even much farther away.

Lepanthes tungurahuae was discovered on the lower slopes of Tungurahua volcano, but that population would have been periodically wiped out by eruptions. I found that it actually had a much wider distribution. Photo: Lou Jost.

Lepanthes tungurahuae was discovered on the lower slopes of Tungurahua volcano, but that population would have been periodically wiped out by eruptions. I found that it actually had a much wider distribution. Photo: Lou Jost.

These infrared and visible-light photos of the eruption were taken by the Instituto Geofisico of the Escuela Politecnica Nacional from their monitoring station in Guadalupe, near Banos. The upper part of the volcano was essentially sterilized by the heat. Photo: IGEPN.

These infrared and visible-light photos of the eruption were taken by the Instituto Geofisico of the Escuela Politecnica Nacional from their monitoring station in Guadalupe, near Banos. The upper part of the volcano was essentially sterilized by the heat. Photo: IGEPN.

Geology and history often limit the possibility of strict endemism in the high parts of these mountains. Not only volcanic eruptions but also climate change can push incipient new species off these mountains. The layered, datable pollen record at the bottom of Andean lakes (such as Laguna Yaguarcocha in northern Ecuador) shows in detail how vegetative zones moved up and down these mountains in the recent past, by as much as 500-1000 meters. Species that require high elevations would be eliminated from the peaks of the highest mountains during warm times (one such warm period occurred just 2000 years ago). On the other hand, species from slightly lower elevations would be able to spread off a single peak and reach neighboring peaks during the cold periods, as vegetation bands lowered and patches of cold-loving montane forests coalesced at less-fragmented lower elevations. All of these processes, and more, affect the distribution of endemic species in today’s forests. We are trying to sort them out by looking closely at the evolutionary radiations of species endemic to our area. I’ll write more about this in later posts.

2 thoughts on “Terrifying beauty once again

  1. Pingback: Our volano re-awakens, nice fireworks! | Fundacion EcoMinga

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s