New glass frog published today from our Manduriacu Reserve!

_DSC9281

Hyalinobatrachium nouns. Click to enlarge. Photo: Jaime Culebras.

[Traduccion en español abajo]

Western Ecuador is exceptionally rich in glass frogs, named because their underside is transparent and their internal organs are clearly visible. Today a group of herpetologists published the descriptions of two new species of glass frogs in the genus Hyalinobatrachium from western Ecuador. These are exceptionally beautiful frogs and the discoverers were very excited to have found them. One species, H. nouns, was found in our Manduriacu Reserve and nearby Los Cedros Reserve, and the other, H. mashpi, was discovered in the nearby Mashpi Reserve. Though the two species look similar to each other, their genetic differences are  large relative to the genetic distances between some other species pairs. They are examples of cryptic diversity that might have gone undetected if no one had bothered to analyze their DNA.

fig-3-2x

Frogas A and B are H. mashpi. Frogs C and D are H. nouns. From the original article..

The species found in our reserve, H. nouns, was named in honor of Nouns, a global decentralized organization composed of owners of Nouns characters, which are digital art creations that live on the blockchain. The Nouns organization funds projects that protect the wonders of nature, and their support for EcoMinga has been very important to us.

Juan Manuel Guayasamin (the lead author of the paper) and Jaime Culebras sent me this account of how they found H. nouns:

“In March of 2012, in a field trip as part of a master’s degree program of the Universidad Indoamerica (Ecuador) and UIMP (Spain), a team of students and professors (Mariela Palacios, Jaime Culebras y Juan Manuel Guayasamin) found a beautiful glass frog on a leaf over a little stream in  the Los Cedros Reserve (http://reservaloscedros.org/about/), in the Cordillera de Toisán, Ecuador.”

“At the time it was identified as “Hyalinobatrachium valerioi”, but doubts about the identity stayed with us. Some years later, we found more examples in the Río Manduriacu Reserve (Fundacion EcoMinga), which adjoins Los Cedros Reserve, in several expeditions led by The Biodiversity Group, Fundación Cóndor, Fundación Ecominga, Centro Jambatu, the Universidad San Francisco de Quito (USFQ) y Photo Wildlife Tours. In these trips, during the night,  we heard frog songs in the distance, very distinct from those of the glass frogs previously known from the area (H. valerioi y H. aureoguttatum). We began to think it was possible that we were faced with a new species.”

“Finally, after years of gathering  data, we made various morphological and genetic analyses, which showed that this beautiful frog was indeed new.  The new species, which we named Hyalinobatrachium nouns, is mophologically identical to another species which we also described from the Mashpi Reserve and Tayra Reserve (H. mashpi). Nevertheless we found that the genetic differentiatiom between these two species is 4.6%-4.7%, indicating that the two species are distinct in spite of the very small distance separating the populations (less than 20 km),  20 kms). This shows us once again that the Andes in general, and the Cordillera del Toisán in particular, have a very high level of endemism.”

WhatsApp Image 2022-03-19 at 08.34.31JoseVieira

Hyalinobatrachium nouns hanging from the underside of a leaf with an egg cluster. Photo: Jose Vieira.

Not much is known about the ecology and behavior of H. nouns, but it is probably similar to that of H. mashpi and other glass frogs in the same genus.  Members of this genus typically sit on the undersides of leaves along steep streams; H. mashpi was mostly 3-14 meters above the ground, makig them very difficult to find. Males of H. mashpi have been found near egg clusters, perhaps guarding them.

Both these new species have tiny ranges in a region where mining is a constant threat. The authors recommend that both species be classified as “Endangered” under the criteria of the International Union for the Conservation of Nature (IUCN). The scientfic paper describing these frogs says this about their conservation status:

“Amphibians are the most threatened Andean vertebrates. Amphibian diversity and endemicity are particularly accentuated in the Andes––roughly 70% of the 1,120 reported species are endemic (CEPF, 2021). The Andes also boasts the highest rate of new amphibian species discoveries of any biogeographic region in South America (Vasconcelos et al., 2019; Womack et al., 2021). Yet, amphibians are particularly susceptible to anthropogenic impacts (Duellman & Trueb, 1994; Lips et al., 2006; Pounds et al., 2006; Scheele et al., 2019), which are immense in the Andes. Currently, only 8% of Andean amphibian species are well-protected (Bax & Francesconi, 2019). An array of human pressures continues to diminish the integrity of Andean terrestrial and freshwater ecosystems (Myers et al., 2000; Knee & Encalada, 2014; Roy et al., 2018; Bax & Francesconi, 2019; CEPF, 2021; Torremorell et al., 2021). As a result, taxonomic groups such as glassfrogs—where a majority of members are endemic to the Tropical Andes, and individual species often have highly restricted distributions—are especially at risk of population declines and extinction (Aguilar et al., 2012; Guayasamin et al., 2019b, 2020; Ortega-Andrade et al., 2021).”

Thanks very much to Juan Manuel Guayasamin, the Biodiversity Group, the Universidad San Francisco de Quito, and the rest of the team for investigating our reserves’ biodiversity and supporting our conservation work! Thanks also to our partner Rainforest Trust (US) which supports our work in the Choco region and which connected us with Nouns DOA, and to World Land Trust for their support of our work in the region as well.

Lou Jost, President, Fundacion EcoMinga

¡Nueva ranita de cristal de nuestra Reserva Manduriacu publicada hoy!

IMG 01 – Hyalinobatrachium nouns. Click para agrandar. Fotografía: Jaime Culebras

El occidente de Ecuador es excepcionalmente rico en ranitas de cristal, nombradas así debido a que su vientre es transparente y sus órganos internos son claramente visibles. Hoy un grupo de herpetòlogos publicaron las descripciones de dos nuevas especies de ranas de cristal en el género Hyalinobatrachium del occidente de Ecuador. Estas son ranas excepcionalmente hermosas y los descubridores estaban muy emocionados de haberlas encontrado. Una especie, H. nouns, fue encontrada en nuestra Reserva Manduriacu y en la cercana Reserva Los Cedros, y la otra, H. mashpi, fue descubierta en la cercana Reserva Mashpi. Aunque ambas especies se ven similares entre sí, sus diferencias genéticas son grandes en relación con las distancias genéticas entre algunos otros pares de especies. Ellas son ejemplo de diversidad críptica que pudo haber pasado desapercibida si nadie se hubiese interesado en analizar su ADN.

IMG 02 – Ranas A y B son H. mashpi. Ranas C y D son H. nouns. Del artículo original.

Las especies encontradas en nuestra reserva, H. nouns, fue nombrada en honor a Nouns, una organización global descentralizada compuesta de dueños de los caracteres Nouns los cuales son creaciones de arte digitales que viven en el blockchain (cadena de bloques). La organización Nouns financia proyectos que protegen las maravillas de la naturaleza, y su aporte a EcoMinga ha sido muy importante para nosotros.

Juan Manuel Guayasamín (el autor principal del artículo) y Jaime Culebras, me enviaron este reporte de como ellos encontraron a H. nouns:

“En Marzo del 2012, en una salida de campo como parte de un programa de masterado de la Universidad Indoamerica (Ecuador) y UIMP (España), un equipo de estudiantes y profesores (Mariela Palacios, Jaime Culebras y Juan Manuel Guayasamín) encontraron una hermosa ranita de cristal en una hoja sobre un pequeño arroyo en la Reserva Los Cedros (http://reservaloscedros.org/about/), en la Cordillera de Toisán, Ecuador.”

“Al momento fue identificada como “Hyalinobatrachium valerioi“, pero las dudas sobre su identidad se quedaron con nosotros. Algunos años después, encontramos más ejemplares en la Reserva Río Manduriacu (Fundación EcoMinga), la cual colinda con la Reserva Los Cedros, en varias expediciones lideradas por The Biodiversity Group, Fundación Cóndor, Fundación Ecominga, Centro Jambatu, la Universidad San Francisco de Quito (USFQ) y Photo Wildlife Tours. En estas expediciones, durante la noche, escuchábamos a lo lejos los cantos de rana, muy distintos a los de las ranas de cristal previamente conocidas en el área (H. valerioi y H. aureguttatum). Empezamos a pensar que era posible que nos encontráramos con una nueva especie.”

“Finalmente, después de años de recopilación de datos, hicimos varios análisis morfológicos y genéticos, los cuales mostraron que esta hermosa rana en efecto era nueva. La nueva especie, a la cual nombramos Hyalinobatrachium nouns, es morfológicamente idéntica a otra especie que también describimos de la Reserva Mashpi y la Reserva Tayra (H. mashpi). Sin embargo, encontramos que la diferenciación genética entre estas dos especies es 4.6 – 4.7%, lo que indica que ambas especies son distintas a pesar de la muy pequeña distancia que separa las poblaciones (menos de 20 km). Esto nos muestra una vez más que los Andes en general, y la Cordillera del Toisán en particular, tienen un alto nivel de endemismo”.

IMG 03 – Hyalinobatrachium nouns colgando del envés de una hoja con un grupo de huevos. Fotografía: José Vieira

No se conoce mucho sobre la ecología y comportamiento de H. nouns, pero es probablemente similar a aquella de H. mashpi y otras ranas de cristal en el mismo género. Miembros de este género típicamente se posan en el e​nvès de las hojas a lo largo de arroyos empinados; H. mashpi se encontraba mayormente a 3-14 metros sobre el suelo, haciéndolas muy difìciles de encontrar. Los machos de H. mashpi han sido encontrados cerca de grupos de huevos, tal vez cuidándolos.

Ambas especies nuevas tienen pequeños rangos en una región donde la minería es una amenaza constante. Los autores recomiendan que ambas especies sean clasificadas como “En Peligro” bajo los criterios de la Unión Internacional para la Conservación de la Naturaleza (UICN). El artículo científico describiendo estas ranas dice lo siguiente sobre su estado de conservación:

“Los anfibios son los vertebrados andinos más amenazados. La diversidad de anfibios y su endemismo son particularmente marcados en Los Andes — aproximadamente el 70% de las 1120 especies reportadas son endémicas (CEPF, 2021). Los Andes también cuentan con la tasa más alta de descubrimientos de nuevas especies de anfibios de cualquier región biogeográfica en América del Sur (Vasconcelos et al., 2019Womack et al., 2021). sin embargo, los anfibios son particularmente susceptibles a los impactos antropogénicos (Duellman & Trueb, 1994Lips et al., 2006Pounds et al., 2006Scheele et al., 2019), los cuales son inmensos en los Andes. Actualmente, solo el 8% de las especies de anfibios andinos estan bien protegidos. (Bax & Francesconi, 2019). Una serie de presiones humanas continúa disminuyendo la integridad de los ecosistemas andinos terrestres y de agua dulce  (Myers et al., 2000Knee & Encalada, 2014Roy et al., 2018Bax & Francesconi, 2019CEPF, 2021Torremorell et al., 2021). Como resultado, los grupos taxonómicos como las ranitas de cristal -donde la mayor parte de los miembros son endémicos de los Andes Tropicales, y las especies individuales a menudo tienen distribuciones altamente restringidas- están especialmente en riesgo de disminución de la población y extinción (Aguilar et al., 2012Guayasamin et al., 2019b2020Ortega-Andrade et al., 2021).”

Muchas gracias a Juan Manuel Guayasamín, The Biodiversity Group, la Universidad San Francisco de Quito, y el resto del equipo ¡por investigar la biodiversidad de nuestras reservas y apoyar nuestro trabajo de conservación!

Lou Jost, Presidente, Fundación EcoMinga.

Traducción: Salomé Solórzano-Flores

Shrew-opossums, our strangest mammals

C_sangay_JB

The shrew-opossum Caenolestes sangay, not exactly cute and cuddly! Photo: Jorge Brito.

Most mammals, including us, are placental mammals. There are two smaller groups of mammals: egg-laying monotremes like the platypus, and marsupials like the opossum and kangaroo. These groups diverged more than a hundred million years ago from the lineage that became the placental mammals, and though they are minor players in the world today, both were more important in the distant past.  Marsupials in particular were once much more important and much more diverse. Marsupials apparently originated in the northern continent that became Asia and North America. About 65Mya marsupials moved from North America into South America, which at this time was also connected to Antarctica and Australia. Around 50-35Mya, at least one species of marsupial made it to what is now Australia via Antarctica, setting the stage for the later diversification of marsupials on that continent as it moved away from Antarctica and into its splendid isolation in the remoteness of the Pacific Ocean.

Thylacosmilus_Holotype_FMNH

South American saber-toothed marsupial carnivore Thylacosmilus. Photo: Wikipedia CC.

Fossil evidence shows that ancient South America of 10-40Mya had a rich and ecologically diverse marsupial fauna. Some of them were the size of bears, and others were large predators with two saber-like teeth like those of the famous saber-toothed cats. Some were hopping animals similar to the kangaroo rat, some resembled the present-day North American opossum, and some were arboreal animals resembling primates. There was also a rich and varied group of small and mid-sized rat-like marsupials belonging to the order Paucituberculata, which included both carnivorous and plant-eating genera.

Over time, these strange marsupials slowly disappeared. Only a few species in the order Paucituberculata, and one species (or species complex) in the order Microbiotheria (which may have been  a reverse migrant from the early marsupial diversification in Australia), survive today.

Our reserves protect two of these survivors, the “shrew-opossums” Caenolestes convelatus in our Dracula Reserve and Caenolestes sangay in our Cerro Candelaria Reserve (see Technical Note 1 below). Both shrew-opossums are in the order Paucituberculata and both are mainly predators, feeding on insects, other arthropods, worms, frogs, and small mammals, but they also sometimes eat fruit and fungi. They have two distinctive lower incisors that point straight ahead, like daggers. Caenolestes sangay is a new species described in 2013 by a group of scientists that included our collaborator Jorge Brito. It is exciting to add a previously unknown descendant of this lonely lineage, which diverged from other marsupials 55Mya.

C_sangay

Caenolestes sangay skull, note the dagger-like lower incisors. From Ojala-Barbour et al (2013) A new species of shrew-opossum (Paucituberculata: Caenolestidae) with a phylogeny of extant caenolestids, Journal of Mammology 94: 967-982.


C_sangay_ Candelaria_JB_DSC9230small

The shrew-opossum Caenolestes sangay. Photo: Jorge Brito.

Caenolestes convelatus_Carchi_Reserva Drácula_Foto Jorge BritoSmall

The shrew-opossum from our Dracula Reserve, Caenolestes convelatus. Photo: Jorge Brito.

In our Dracula and Cerro Candelaria reserves, the resident species of Caenolestes is the sole representative of its order, and this makes its conservation especially important. Conservationists tend to think in terms of species diversity, but we should also pay attention to higher-level diversity. All else being equal, a reserve that contained sloths, manatees, monkeys, bats, and deer would be far more important than a reserve that protected only a set of rodents, even if the number of species were the same in each of the two reserves. A reserve with one species of rat and one species of shrew-opossum is far more diverse and important than an otherwise identical reserve with two species of rat and no species of shrew-opossum. The first reserve protects more unique evolutionary history than the second. I believe this should be the guiding principle of conservation: maximize the amount of unique evolutionary history protected.

Untitled-2

Phylogenetic tree of the major mammal groups (orders). The order Paucituberculata, which contains the shrew-opossums, is highlighted in red. Modified from https://www.palaeontologyonline.com/articles/2012/fossil-focus-marsupials/

The amount of unique evolutionary history represented in a given locality is called its “phylogenetic diversity”. In this age of DNA analysis we have reasonably accurate phylogenetic trees for many plant and animal groups. For any given natural group — mammals, for example — the simplest measure of the amount of unique evolutionary history protected at a locality is the total length of all the branches in the phylogenetic tree (including the “trunk” that connects the group to the rest of the organisms in the reserve) of the species found there (see Technical Note 2 for other ways of measuring this). In the case of our shrew-opossum, it has been evolving on its own unique branch for at least 55 million years, so it contributes quite a lot of  phylogenetic diversity to our Cerro Candelaria and Dracula reserves. The shrew-opossums are among the most interesting mammals in our reserves, even though almost no one has ever heard of them.

Lou Jost, Fundacion EcoMinga

Technical notes:

  1. The name “Shrew-opossum” can be misleading. Strictly speakimg, the opossums are marsupials in a different order than this animal. I think a better English name for these would be “marsupial shrew”.
  1. My colleagues Anne Chao, CH Chiu, and I have developed some more advanced measures of phylogenetic diversity and differentiation: Chao A, Chiu CH, Jost L (2010) Phylogenetic diversity measures based on Hill numbers, Philosophical Transactions of the Royal Society B 365:3599–3609 https://www.researchgate.net/publication/47566303_Phylogenetic_diversity_measures_based_on_Hill_numbers

Zarigüeyas-musaraña, nuestros mamíferos más extraños 

IMG 01 – ¡La zarigüeya-musaraña Caenolestes sangay, no exactamente tierna y mimosa *delicada*! Fotografía: Jorge Brito 

La mayoría de mamíferos, incluyéndonos, son mamíferos placentarios. Hay dos grupos más pequeños de mamíferos: los monotremas pone-huevos como el ornitorrinco, y los marsupiales como las musarañas y el canguro. Estos grupos divergieron hace más de cien millones de años atrás del linaje que se volvió de los mamíferos placentarios, y aunque son jugadores menores en el mundo de hoy, ambos fueron más importantes en el pasado distante. Los marsupiales en particular fueron mucho más importantes y mucho más diversos. Aparentemente los marsupiales se originaron en el continente norte que se volvió Asia y Norteamérica. Cerca de 65 millones de años atrás los marsupiales se movieron de Norteamérica a Suramérica, lo cual en ese tiempo también se conectaba a la Antártica y Australia. Cerca de 50-35 millones de años atrás, al menos una especie de marsupial llegó a lo que ahora es Australia a través de la Antártica, preparando el terreno para una diversificación tardía de marsupiales en ese continente a medida que se alejaba de la Antártica y se adentraba en su espléndido aislamiento en la lejanía del Océano Pacífico.  

IMG 02 – Carnívoro marsupial dientes de sable sudamericano Thylacosmilus. Fotografía: Wikipedia 

La evidencia fósil muestra que la antigua Suramérica de hace 10 a 40 millones de años tenía una fauna marsupial rica y ecológicamente diversa. Algunas de ellas tenían el tamaño de osos, y otros eran grandes predadores con dos dientes en forma de sable como los de los famosos felinos dientes de sable. Algunos eran animales saltarines similares a la rata canguro, y algunos parecían a las musarañas norteamericanas de hoy en día, y algunos eran animales arbóreos parecidos a primates. También había un grupo rico y variado de marsupiales similares a ratas de tamaño pequeño y mediano pertenecientes al orden Paucituberculata, el cual incluye géneros carnívoros y herbívoros.  

A lo largo del tiempo, estos marsupiales extraños desaparecieron lentamente. Sólo unas pocas especies en el orden Paucituberculata, y una especie (o complejo de especies) en el orden Microbiotheria (el cual puede haber sido un migrante inverso de la diversificación marsupial temprana en Australia), sobrevive hoy. 

Nuestras reservas protegen dos de estos sobrevivientes, las “musarañas-zarigüeyas” Caenolestes convelatus en nuestra Reserva Drácula y Caenolestes sangay en nuestra Reserva Cerro Candelaria (ver la Nota Técnica 1 a continuación). Ambas zarigüeyas-musarañas están en el orden Paucituberculata y ambos son principalmente depredadoras, alimentándose de insectos, otros artrópodos, gusanos, ranas, y pequeños mamíferos, pero ellos también a veces comen frutas y hongos. Ellos tienen dos incisivos inferiores distintivos que apuntan hacia adelante, como dagas. Caenolestes sangay es una nueva especie descrita en 2013 por un grupo de científicos que incluyen a nuestro colaborador Jorge Brito. Es emocionante añadir un descendiente previamente desconocido a este linaje solitario, el cual divergió de otros marsupiales hace 55 millones de años.  

IMG 03 – Cráneo de Caenolestes sangay, observe los incisivos inferiores en forma de daga. De Ojala-Barbour et al. (2013) Una nueva especie de zarigüeya-musaraña (Paucituberculata: Caenolestidae) con una filogenia de caenolestidos existentes, Journal of Mammology 94:967-982 

IMG 04 – La zarigüeya-musaraña Caenolestes sangay. Fotografía: Jorge Brito 

IMG 05 – La zarigüeya-musaraña de nuestra Reserva Drácula, Caenolestes convelatus. Fotografía: Jorge Brito. 

En nuestras Reservas Drácula y Cerro Candelaria, la especie residente de Caenolestes es la única representante de su orden, y esto hace que su conservación sea especialmente importante. Los conservacionistas tienden a pensar en términos de diversidad de especies pero deberíamos también poner atención a la diversidad de alto nivel. En igualdad de condiciones, una reserva que contiene perezosos, manatís, monos, murciélagos y ciervos sería mucho más importante que una reserva que protege solo a un grupo de roedores, incluso si el número de especies fuera el mismo en cada una de las dos reservas. Una reserva con una especie de rata y una especie de zarigüeya-musaraña es mucho más diversa e importante que una reserva idéntica con dos especies de rata y ninguna especie de zarigüeya-musaraña. La primera reserva protege una historia evolutiva más singular que la segunda. Creo que este debería ser el principio rector de la conservación: maximizar la cantidad de historia evolutiva única protegida.

IMG 06 – Árbol filogenético de la mayoría de los grupos de mamíferos (órdenes). El orden Paucituberculata, el cual contiene las zarigüeyas-musarañas, esta resaltado en rojo. Modificado de: https://www.palaeontologyonline.com/articles/2012/fossil-focus-marsupials/ 

La cantidad de historia evolutiva única representada en una localidad dada es llamada su “diversidad filogenética”. En esta era de análisis de ADN tenemos árboles filogenéticos razonablemente precisos para muchos grupos de plantas y animales. Para cualquier grupo natural dado – mamíferos, por ejemplo – la medida más simple de la cantidad de historia evolutiva única protegida en una localidad es la longitud total de todas las ramas en el árbol filogenético (incluyendo el “tronco” que conecta el grupo al resto de los organismos en la reserva) de las especies encontradas ahí (mire la Nota Técnica 2 para otras maneras de medir esto. En el caso de nuestra zarigüeya-musaraña, ha ido evolucionando por su propia rama por al menos 55 millones de años, de modo que contribuye bastante a la diversidad filogenética de nuestras reservas Cerro Candelaria y Drácula. Las zarigüeyas-musarañas están entre los mamíferos más interesantes en nuestras reservas, incluso aunque casi nadie ha oído hablar sobre ellas. 

Lou Jost, Fundacion EcoMinga 

Traducción: Salomé Solórzano-Flores

 

Notas Tecnicas: 

  1. El nombre “zarigüeya-musaraña” puede ser engañoso. Estrictamente hablando las zarigüeyas son marsupiales en un orden diferente que este animal. Creo que un mejor nombre en inglés para esto podría ser “musaraña marsupial” 
  2. Mis colegas Anne Chao, CH Chiu, y yo hemos desarrollado algunas medidas más avanzadas para la diferenciación y diversidad filogenética: Chao A, Chiu CH, Jost L (2010) Diversidad filogenética basada en los números de Hill, Philosophical Transactions of the Royal Society B 365:3599-3609 https://www.researchgate.net/publication/47566303_Phylogenetic_diversity_measures_based_on_Hill_numbers 

Guest post: The fascination of trees

DSCF1329

[Editor’s note: This guest post is by Lane Davis. Lane is a former School for International Training student who spent a semester in Ecuador and did her independent study project with us. She then won a Fulbright scholarship to return to set up three research plots in our Cerro Candelaria Reserve,  at 2000m,  2500m, and 3000m. By identifying every tree in each plot, she has generated data which can help us quantify and understand not only the diversity of our forests, but also the important differences in composition between our forests at different altitudes, and between the Cerro Candelaria forests and others locally and globally. This kind of data provides a much-needed step towards understanding the deeper underlying causes  biodiversity – LJ]

[Traduccion a Espanol abajo]

Photos courtesy Lane Davis unless otherwise noted.

“And this?” Javier asks with anticipation as he opens the folded newspaper sheet labeled #47. I open my warped, mud-covered Rite in the Rain field notebook and look up the number. “Canopy tree, no latex or odor but the bark slash oxidized from white to brown. Do you want to see the live photos?” I ask. Javier shakes his head no and picks up a hand lens. I do the same and we each lift into the light a pressed and dried branch and examine it with our hand lenses.

Under the 30x magnification, the underside of the leaf shimmers with thousands of little scales. “What is it?” I ask him. Javier shrugs his shoulders almost jubilantly, muttering “Incredible,” and places the sample in a growing stack of unidentified plants. Later, we will scour Alwyn H. Gentry’s cinder block of a book “A Field Guide to the Families and Genera of Woody Plants of Northwest South America” and Walter Palacio’s “Árboles del Ecuador” (Trees of Ecuador) for families and genera of dicots with simple, opposite, alternate leaves; entire margins; and peltate trichomes (those shimmery scales) that could match sample #47. In this way, we will shrink the unknown stack, labeled “Desconocidos,” moving each plant we identify instead to piles of taxonomically related plants. But we will only make significant headway into the “Desconocidos” stack when we meet with another botanist, Walter Palacios. Yes, the same Walter Palacio’s I mention above who quite literally wrote the book on identifying trees in Ecuador. Javier and Walter are friends. Ecuador is a small country and its scientific community smaller, so pretty much all botanists know one another (which made it a little embarrassing when I asked for Walter’s signature on my copy of “Árboles del Ecuador,” but it was worth it).

But for now, Javier plunges back into the samples we haven’t reviewed at all yet. He grows more incredulous yet ecstatic each time he peels open one of the newspapers in which I have carefully pressed and dried tree clippings.  Sometimes he takes one look and proclaims the tree’s family, “Fabaceae” or “Lauraceae,” or even the genus, “Inga” or “Ocotea,” and I record this proclamation in my Microsoft Excel database and in the corner of the newspaper. But around half the time the sample remains with only a number to identify it.

blog2

blog1

One of my samples identified to family level. This is a member of one of the largest neotropical plant families, the Melastomataceae.

 

This uncertainty thrills Javier, a talented botanist, biologist, and the Executive Director of Fundación EcoMinga, the conservation organization I am affiliated with for my Fulbright work and which owns the forest where my dried tree clippings once grew. He has spent an unknowable number of hours traipsing through Ecuadorian forests; if he doesn’t recognize the plant, it must be at least somewhat rare. Javier also gets excited any time my pile of pressed plants yields a species he hasn’t seen in my samples yet, regardless of whether or not he knows what it is. With the discovery of each unique species, tree diversity goes up. The diversity of my plot, the 40m x 40m section of the forest where I gathered my plant samples, goes up in an absolute sense – one definition of diversity is simply the number of species present in a given area. But the implied diversity of the forest surrounding my plot shoots up even faster. My small plot cannot possibly capture the full diversity of the cloud forest, but we can use my data to estimate it. This calculation is based on the number of singletons, or species for which we have found only one individual tree in the plot. If singletons make up a large portion of the data, then we know the data isn’t representing the forest’s diversity well and there must be many yet undiscovered species outside of my plot. (For more on these calculations, see Chao and Jost 2012 and Chao et al. 2014).

For my part, the identifications and repetitions of plant groups are just as exciting as the unknown and new species; with each familiar sample and identifiable family characteristic, my own ability to identify cloud forest trees expands and solidifies. Unlike Javier, I have spent a knowable number of hours in the Ecuadorian cloud forest – to date, about 275 (not including evening and night hours when I slept in the field). Almost all of this time I spent collecting the plants piled in front of us, or walking to one of my three plots to do so.

During data collection, I lived in the 250-person village of El Placer at the base of Cerro Candelaria, the forest reserve owned by Fundación EcoMinga where I collected the now pressed and dried tree samples. Each morning I set out at 7:00 am, often but not always accompanied by a guardabosque (a forest ranger), and hiked to one of my three plots in the reserve. When I wrote my Fulbright grant proposal to study the vulnerability of Andean cloud forest trees to climate change, I planned to do so by learning about the altitudinal distributions of different trees species using eight different 10m x 100m plots ascending the mountain slope in Candelaria. Species growing in only a narrow altitudinal band will likely have a tougher time keeping up with their ideal growing conditions – as climate change shifts those conditions upslope – than species that are adapted to the conditions in a large geographic range.  It quickly became clear that I would not have enough time in the 10-month grant period to take data in such a large area, and Javier and I decided to modify our methodology to match that of the Evaluación Nacional Forestal (National Forest Evaluation) taking place in 2018, which uses square plots. That way, the Ecuadorian Ministry of the Environment could use our data in their study, too.

blog3

blog4

Views from and of El Placer

As a result, each morning I left El Placer to arrive at one of three 40m x 40m plots, located at 2000 m (6562 ft), 2500 m (8202 ft), or 3000 m above sea level (9843 ft).  Beginning from 1400 m (4593 ft), my commute required 2hrs and a very steep 1969 ft elevation gain to my first plot, 3 hrs and a crushing 3609 ft gain to my second plot, or 6 hrs and a demoralizing 5250 ft gain to my third plot. Consequently, I often camped in the field when I worked at my second plot and always did at my highest plot.

blog7blog6

blog5

Campsite in and views from my plot at 3000 meters (nearly 10,000 ft above sea level).

I hiked through the Andean cloud forest, which usually meant hiking through a forest submerged in clouds. Cloud forests exist on mountains near lowland sources of atmospheric moisture – usually the ocean but in this case the Amazon Rainforest. Prevailing weather patterns push this moisture up the slopes, where it cools and condenses into low-level clouds, mist, or rain, leading to the frequent presence of precipitation in one of these forms.

blog9

blog8

Clouds in the cloud forest.

When I first began taking data in the cloud forest, I had no idea how to identify the trees around me, and with good reason. Though I took Field Botany at Williams College and identified plants as part of my senior Biology thesis, there are only a little over 70 species of trees in the state of Massachusetts (Butler 2016). In comparison, 131 different species of trees exist in the 4,000 square meters (slightly less than 1 acre) of cloud forest I have examined. Working to identify these trees using my dried samples, photos, books, the internet, the collections at the National Herbarium (a library of preserved plant samples), and significant help from professional botanists, I have slowly learned to recognize the defining characteristics of my plots’ most common families, genera, and species. Now when I walk through the forest, morphological features of plants capture my attention, often provoking a scientific name to come to mind. Large conical stipules, ring scars, and latex scream Moraceae; interpetiolar stipules insinuate Rubiaceae; and petiolar sheaths with a sweet soapy smell proclaim their identity – Hedyosmum.

xx

Photo: Fausto Recalde/EcoMinga.

 

blog13

blog11

blog12

Cloud forest diversity is not confined to its trees. Far from it. For example, in the past 10 years, around 40 new species of orchid and 10 new species of frog have been discovered in EcoMinga’s reserves in one relatively small section of the Ecuadorian cloud forest. Above, a few photos of the incredible non-tree diversity of the cloud forest.

These trees and the billions of organisms that live on, under, and around them, ranging from soil microorganisms to Howler monkeys, as well as the inorganic features of the landscape like rocks and soil, make up the cloud forest ecosystem. This intricate network provides critical services to the human populations that make their home in the Andes Mountains. For example, cloud forest soil and epiphytes (plants that live on other plants and draw water and nutrients from the air rather than the soil) filter and regulate the flow of the glacial water which services millions of people in rural and urban Andean communities (Anderson et al. 2011). The extensive cloud forest root system helps hold soil in place, preventing erosion and landslides (Anderson et al. 2011). Climate change will disrupt these and other services, threatening human and ecosystem health and safety. For example, more intense rains combined with tree die-offs will increase erosion and landslides, which threaten human safety and water supply. In Quito in 2017, a landslide blocked the city’s main water channel, leaving 600,000 people without water for several days (Manetto 2017). In El Placer landslides occasionally cover pipes and cut off water; in my six months living there, this occurred once. [Editor’s note: See my previous post.]

Disruption of water supply is just one example of the myriad potential ways climate change and the resulting deterioration of the cloud forest ecosystem may affect El Placer and other similar communities nestled in Andean valleys. Better understanding the cloud forest’s fate under climate change will allow for targeted approaches to climate change preparation, for instance by creating emergency water delivery systems. Given the imminence of climate change, however, it is critical to implement strategies that decrease vulnerability to a wide range of climate change outcomes. I recently wrote a paper for Fulbright’s Regional Enhancement seminar on the how Fundación EcoMinga and El Placer’s partnership may do just that. I argued that EcoMinga bolsters El Placer’s climate resiliency by providing economic activities to the community that are less likely to be impacted by climate change than those that are otherwise available to them.

The main way EcoMinga does this is by employing community members as forest rangers in its reserves. The forest rangers build and maintain trails and cabins, assist visiting scientists and students with their research, and serve as keen eyes that often discover new species and other interesting biodiversity. My own work would have been out of reach (literally) without the help of Darwin Recalde, Jesús Recalde, Tito Recalde, Santiago Recalde, Jordy Salazar, and Andy Salazar. These men climbed 30-meter tall trees to reach leaves and flowers at the very top – those same leaves and flowers that now sit preserved in the National Herbarium in Quito and that make up the rows of my datasheets with which I will try to say something about the forest’s future.

blog14

Darwin Recalde climbing a tree to cut a sample of its leaves.

In fact, this goal – to assess the forest’s future under climate change – has morphed throughout my grant period. As with any interesting scientific study, this one has produced more questions than it will answer. Based on the calculations I mentioned earlier, though I took samples from 73 different tree species in my lowest altitude and most diverse plot, these represent less than half of the total number of species in the forest at that altitude.  What other species does the forest in this area contain? What allows the most common species I found to thrive? How will climate change affect its strategy? How will the forest’s response to climate change compare with my predictions? Will adaption differ in different locations within the cloud forest? Do these responses correspond with different microclimates? How do other aspects of the tree’s environment, like soil type and slope, affect forest adaption?

Many of these questions will only be answerable with a long-term research project. I have recently learned that my work will become part of just that. Fundación EcoMinga and the Instituto Nacional de Biodiversidad (National Institute of Biodiversity, or INABIO) are beginning a long-term forest monitoring collaboration. The study will comprise a network of plots in the Ecuadorian cloud forest including my three, a few other existing plots in EcoMinga’s reserves, and several more yet to be established. Tree growth, climate, and forest composition will be monitored regularly in these areas, and the data from my 2017-2018 study will form the baseline to which future measurements from my plots will be compared. While EcoMinga and INABIO are still determining details, the research will shed light on many of the questions my study has produced. In addition to providing baseline data, there are other ways I can help move this project forward. For one, I am striving to make the R (a statistical program) code I am writing to analyze my own data easily reproducible so other researchers and students can use it for quick analysis of data from all the plots.

This is an aerial view of Lane’s Plot 1 at 2000m elevation in our Cerro Candelaria Reserve. We fly over the 40m x 40m plot in the first few seconds, and then continue down the ridge to hover above our research station. Video by Lou Jost.

This is an aerial view of Lane’s Plot 2 at 2500m elevation in our Cerro Candelaria Reserve. We break through the clouds and fly straight to the 40m x 40m plot in the first few seconds, heading upslope. Then we turn around and float slightly downslope over and past the plot. Video by Lou Jost

I can also help by recruiting more students to continue the study. So much exciting work remains to be done. In addition to expanding and monitoring my plots, ample opportunities to personalize the project exist. For instance, you (yes, you!) could explore using drone imagery to identify trees from the air, investigate the role of rodents in seed dispersal, study the timing of tree sexual reproduction (phenology), or look at the genetics of cloud forest tree diversity – and how each of these impacts the forest’s adaption to climate change. All of these are areas in which EcoMinga currently works or would like to pursue. Whatever interests you, you will find enthusiastic scientists in Ecuador to support you. And if none of this attracts you but you know of others who it might, please send this post along to them.

blog16 copy

blog15 copy

Example of aerial images of my plots that could be used to identify trees. Thanks to Lou Jost and his excellent drone piloting for these images! 

Finally, we can all support EcoMinga, its work conserving the cloud forest, partnership with El Placer, and scientific collaboration with INABIO by donating to the Foundation through the Orchid Conservation Alliance (US), the World Land Trust (UK) and Rainforest Trust (US). (Make sure you specify that the funds are for EcoMinga.) Contact Lou Jost (loujost@gmail.com) for more information about donating.

Thank you for reading! If you are interested in continuing this work and/or in hearing more about it, please do not hesitate to contact me:

Lane Davis

lanedavis17@gmail.com

(404) 805-2234 (WhatsApp or iMessage only until I am back in the US on May 11, 2018)

The opinions and information reported here are my own and do not represent those of the Fulbright Ecuador Commission, the Fulbright U.S. Student Program, or the U.S. Department of State.

 

References

Anderson, E.P., Marengo, J., Villalba, R., Halloy, S., Young, B., Cordero, D., Gast, F., Jaims, E., and Ruiz, D. Consequences of Climate Change for Ecosystems and Ecosystem Services in the Tropical Andes. In Climate Change and Biodiversity in the Tropical Andes; Herzog, S.K., Martinez, R., Jørgensen, P.M., Tiessen, H., Eds.; Inter-American Institute           for Global Change Research (IAI): MOtevideo, Uruguay; Scientific Committee on Problems of the Environment (SCOPE): Amstelveen, The Netherlands, 2011; pp 1-19.

Butler, B. J. 2016. Forests of Massachusetts, 2015. Resource Update FS-89. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 4 p.

Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., and Ellison, A.M. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Society of America 84 (1): 45-67. https://doi.org/10.1890/13-0133.1

Chao, A. and Jost, L. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533−2547. http://dx.doi.org/10.1890/11-1952.1.

Manetto, F. 2017. Un derrumbe deja a 600.000 personas sin agua potable en Quito.” El Pais, December 8. https://elpais.com/internacional/2017/12/07/ america/1512681483_601181.html.

 

Post de invitado: La fascinación de los árboles
Nota de editor: Este post de invitados es realizado por Lane Davis. Lane es una ex estudiante de la escuela de Capacitación Internacional que pasó un semestre en Ecuador e hizo su proyecto de estudio independiente con nosotros. Después ganó la beca Fullbright para regresar a configurar las parcelas de investigación en árboles en nuestra Reserva Cerro Candelaria, a 2000 m, 2500 m y 3000 m. Identificando cada árbol en cada parcela, ella ha generado datos que nos pueden ayudar a cuantificary entender no sólo la diversidad de nuestros bosques, pero también la importante diferencia en composición entre nuestros bosques a diferentes altitudes, y entre los bosques del Cerro Candelaria y otros local y globalmente. Este tipo de datos proveen un paso muy necesario para comprender las causas subyacentes más profundas de la biodiversidad. -LJ]
 
Fotografía de cortesía Lane Davis a menos que se indique lo contrario.
¿Y esto?, pregunta Javier con anticipación en cuanto abre la hoja de noticias #47. Yo abro mi cuaderno de campo Rite in the Rain deformado y cubierto de lodo, y busco el número. “Árbol de dosel sin látex ni olor, pero la corteza se oxida de blanco a marrón. ¿Quieres ver las fotos en vivo?” pregunto. Javier niega con la cabeza y toma un lente de mano. Hago lo mismo y levantamos cada uno hacia la luz una rama prensada y seca y la examinamos con nuestras lentes de mano.
Bajo la magnificación 30x, el envés de la hoja brilla con miles de pequeñas escamas. “Qué es?” Le pregunto. Javier se encoje de hombros casi jubilosamente, murmurando “increíble”, y coloca la muestra en una creciente pila de plantas no identificadas. Después, limpiamos  el bloque de ceniza de un libro Alwyn H. Gentry’s “Guía de campo de las Familias y Géneros de de plantas maderables del Noroeste de Sudamérica” y “Árboles del Ecuador” de Walter Palacios para familias y géneros de dicotiledóneas con hojas simples, opuestas, alternas, margenes enteros; y tricomas peltados (aquellos con escamas brillantes) que podrían empatar con la muestra #47. En esta forma, encogeremos las pilas desconocidas, etiquetadas como “Desconocidos” moviendo cada planta que identificamos en lugar de pilas de plantas relacionadas taxonómicamente. Pero solo avanzaremos significativamente en la pila de “Desconocidos” cuando nos reunamos con otro botánico, Walter Palacios. Sí, el mismo Walter Palacios que mencioné antes, quien literalmente escribió el libro de identificando árboles en Ecuador. Javier y Walter son amigos. Ecuador es un país pequeño y su comunidad científica aún más, casi todos los botánicos se conocen (lo que hace un poco vergonzoso cuando pregunto por la firma de Walter en mi copia de “Árboles del Ecuador”, pero valió la pena).
Pero por ahora, Javier vuelve a sumergirse en las muestras que no hemos revisado del todo. El se vuelve más incrédulo pero extático cada vez que abre uno de los periódicos en los que he presionado y secado cuidadosamente los recortes de árboles. A veces toma una mirada y proclama la familia del árbol “Fabaceae” o “Lauraceae” o incluso el género,  “Inga” o “Ocotea,” y yo registro esa proclamación en mi base de datos de Microsoft Excel y en la esquina del periódico. Pero al rededor de la mitad del tiempo, esta muestra se mantiene sólo con un número para identificarla.
Una de mis muestras identifican al nivel de familia. Este es miembro de una de las plantas neotropicales más grandes, la Melastomataceae.
Esta incertidumbe emociona a Javier, un talentoso botánico, biólogo y Director Ejecutivo de la Fundación EcoMinga, la organización de conservación a la que estoy afiliada con mi trabajo en Fullbright y a la cual pertenece el bosque donde mis recortes de árboles secos crecieron una vez. Él ha pasado un gran número de horas recorriendo los bosques ecuatorianos, si el no reconoce la planta, debe ser algo raro. Javier también se emociona cualquier momento que mi montón de plantas prensadas producen una especie que aún no ha visto en mis muestras, independientemente de si sabe o no lo que es. Con el descubrimiento de cada especie única, la diversidad de árboles aumenta. La diversidad de mi parcela, la sección de 40x40m del bosque donde recogí mis muestras de plantas, aumenta en sentido absoluto: una definición de diversidad es simplemente el número de especies presentes en un área dada.
Pero la diversidad implicada del bosque que rodea mi parcela de 40 x 40 m del bosque donde recogí mis muestras de plantas, aumenta en sentido absoluto: una definición de diversidad es simplemente el número de especies presentes en un área determinada. Pero la diversidad implícita del bosque que rodea mi parcela se dispara aún más rápida. Mi pequeña parcela posiblemente no puede representar toda la diversidad del bosque nuboso, pero podemos usar mis datos para estimarlo. Este cálculo esta basado en el número de singletons, o especies para las cuales hemos encontrado solo un árbol individual en la parcela. Si los singletons hacen una gran porción de datos, entonces sabemos que los datos no están representando bien la diversidad del bosque y debe haber muchas especies sin descubrir fuera de mi parcela (Para más de estos cálculos, ver Chao y Jost 2012 y Chao et al. 2014).
De mi parte, la identificación y repetición de los grupos de plantas son tan emocionantes como las especies nuevas y desconocidas; con cada muestra familiar y de característica familiar identificable, mi propia habilidad para identificar los árboles de bosque nublado se expande y solidifica. A diferencia de Javier, yo he invertido muchas horas en el bosque nublado ecuatoriano – a la fecha, cerca de 275 (sin incluir horas de tardes y noches que dormí en el campo). Casi todo este tiempo, lo utilicé colectando montones de plantas frente a nosotros, o caminando en uno de mis tres parcelas para hacer eso.
Durante la recolección de datos, viví en la villa de 250 personas El Placer en la base de Cerro Candelaria, la reserva de bosque propiedad de la Fundación EcoMinga donde colecté las muestras ahora prensados y secas. Cada mañana me pongo en camino a las 7:00 am, a menudo pero no siempre acompañado de un guardabosque, y escalamos a una de mis tres parcelas en la reserva. Cuando escribí mi propuesta para la beca Fullbright para estudiar la vulnerabilidad de los bosques andinos para el cambio climático, planeé hacerlo por aprendizaje de la distribución altitudinal de diferentes especies usando ocho parcelas diferentes de 10 x 100 m ascendiendo las faldas de la montaña en Candelaria. Las especies que crecen en sólo una banda altitudinal estrecha tendrán más dificultades para mantenerse al día con sus condiciones ideales de crecimiento – a medida que el cambio climático cambia esas condiciones cuesta arriba – que las especies que están adaptadas a las condiciones en un grán área geográfica. Este rápidamente se vuelve claro de mono que no tengo suficiente tiempo en los 10 meses del periodo de subvención para tomar datos en un área tan grande, y Javier y yo decidimos modificar nuestra metodología para que coincida con la Evaluación Nacional Forestal (National Forest Evaluation) que se llevará a cabo en 2018, que utiliza parcelas cuadradas. De este modo, el Ministerio de Ambiente de Ecuador podría usar nuestros datos en su estudio también.
Vista de y desde El Placer
Como resultado, cada mañana lejo El Placer para llegar a una de las tres parcelas de 40 x 40 m, localizados a 2000 m (6562 pies), 2500 m (8202 pies), o 3000 m sobre el nivel del mar (9843 pies). Empezando de 1400 m (4593 pies), mi conmutador requiere 2 horas y una ganancia de elevación muy empinada de 1969 pies a mi primera parcela, 3 horas y unos  aplastantes 3609 pies para ganar mi segunda parcela, o 6 horas y una  desmoralizante ganancia de 5250 pies a mi tercera parcela. Consecuentemente, a menudo acampo en el campo cuando trabajo en mi segunda parcela y siempre lo hice en mi trama más alta.
Lugar de acampada y vista de mi parcela a 3000 metros (Cerca de 10 000 metros sobre el nivel del mar).
Escalé a través de los bosques Andinos, los cual usualmente significa escalar a través de un bosque sumergido en nubes. Los bosques nublados existen en las montañas cerca de las tierras bajas de humedad atmosférica – usualmente el océano pero en este caso el Bosque lluvioso amazónico. Los patrones climáticos predominantes empujan esta humedad por las laderas, donde se enfría y se condensa en nubes de bajo nivel, niebla o lluvia, lo que conduce a la presencia frecuente de precipitaciones en una de estas formas.
Nubes en el bosque nublado.
Cuando empecé a tomar los datos en el bosque nublado, no tenía idea de como identificar los árboles a mi alrededor, y con buena razón. Aunque tomé Field Botany en Williams College e identifiqué plantas como parte de mi tesis de biología, solo hay un poco más de 70 especies en árboles en el estado de Massachusetts (Butler 2016). En comparación, 131 especies diferentes de árboles existen en los 4000 metros cuadrados (ligeramente menos de un acre) de bosque nublado que he examinado. Trabajando para identificar estos árboles, usando mis muestras secas, fotos, libros, el internet, las colecciones del Herbario Nacional (una biblioteca de muestras de plantas preservadas), y la gran ayuda de botanicos profesionales, he aprendido lentamente a reconocer las características definitorias de las familias, géneros y especies más comunes de mis parcelas. Ahora, cuando camino por le bosque, las características morfológicas de las plantas captan mi atención, a menudo provocando que se me ocurra un nombre científico. Las estípulas largas y cónicas, escamas en anillo, y látex gritan Moraceae; las estípulas interpeciolares insinúan Rubiaceae; y vainas peciolares con un olor dulce y jabonoso proclaman su identidad: Hedyosmum.
Diversidad del bosque no se restringe a los árboles. Lejos de eso. Por ejemplo, en los pasados 10 años, cerca de 40 nuevas especies de orquídeas y 10 nuevas especies de ranas han sido descubiertas en las Reservas de EcoMinga en una sección relativamente pequeña del bosque nublado Ecuatoriano.  Encima, unas pocas e increíbles fotos de la diversidad de plantas no arbóreas del bosque nublado.
Estos árboles y los billones de organismos que viven en, abajo, y alrededor de ellos, que van desde microorganismos del suelo hasta monos aulladores, así como las características inorgánicas del paisaje como rocas y suelo, forman un ecosistema nuboso. Esta red intrincada provee servicios críticos para la población humana que hace su hogar en las montañas andinas. Por ejemplo, el suelo de los bosques nublados y las epífitas (plantas que viven en otras plantas y recogen agua y nutrientes del aire en lugar del suelo) filtran y regulan el flujo del agua glacial que sirve a millones de personas en las comunidades andinas urbanas y rurales andinas (Anderson et al 2011). El extenso sistema de raíces del bosque nublado ayuda a mantener el suelo en su lugar, previniendo la erosión y los deslizamientos de tierra (Anderson et al 2011). El cambio climático interrumpirá este y otros servicios, amenazando la salud y seguridad humana y del ecosistema. Por ejemplo, las lluvias más intensas combinadas con la muerte de los árboles aumentarán la erosión y deslizamientos de tierra, lo que amenaza la seguridad humana y el suministro de agua. En Quito, en 2017, un deslizamiento de tierra bloqueó el canal principal de agua de la cuidad, dejando a 600 000 personas sin agua por muchos días (Manetto 2017). En El Placer, los deslizamientos de tierra ocasionalmente cubren tuberías y cortan el agua, en mis seis meses viviendo ahí, esto ocurrió una vez.
La interrupción del suministro de agua es sólo un ejemplo de innumerables formas posibles en que el cambio climático y el deterioro resultante del ecosistema del bosque nuboso pueden afectar a El Placer y otras comunidades similares enclavados en los valles andinos. Mejor entendimiento del destino del bosque nuboso bajo el cambio climático permitirá enfoques específicos para la preparación del cambio climático, por ejemplo, creando sistemas de suministro de agua de emergencia. Dada la inminencia del cambio climático, sin embargo, es crítico implementar estrategias que disminuyen la vulnerabilidad de un amplio rango de resultados de cambio climático. Recientemente escribí un paper para el seminario Mejora Regional Fullbright acerca de cómo Fundación EcoMinga y El Placer pueden hacer exactamente eso. Argumenté que EcoMinga refuerza la resiliencia climática de El Placer al proporcionar actividades económicas a la comunidad que tienen menos probabilidades de verse afectadas por el cambio climático que aquellas que de otro modo estarían disponibles para ellos.
La principal forma en que EcoMinga hace esto es mediante los miembros de la comunidad como guardabosques en sus reservas. Los guardabosques construyen y mantienen senderos y cabañas, ayudan a los científicos y estudiantes visitantes con su investigación y sirven como ojos agudos que a menudo descubren nuevas especies y más biodiversidad interesante. Mi propio trabajo hubiera estado fuera de alcance (literalmente) sin la ayuda de Darwin Recalde, Jesús Recalde, Tito Recalde, Santiago Recalde, Jordy Salazar y Andy Salazar. Estos hombres escalan árboles altos de 30 metros de alto para alcanzar hojas y flores en la cima – aquellas mismas hojas y flores que ahora se preservan en el Herbario Nacional en Quito y eso forma las filas de mis hojas de datos con las cuales trataré de decir algo sobre el futuro del bosque.
Darwin Recalde escalando un arbol para cortar muestras de sus hojas.
De hecho, este objetivo – evaluar el futuro del bosque bajo el cambio climático se ha transformado a lo largo de mi periodo de beca. Como en cualquier estudio científico interesante, este ha producido más preguntas de las que responderá. Como en cualquier estudio científico interesante, este ha producido más preguntas de las que responderá. Con base en los cálculos que mencioné antes, aunque tomé muestras de 73 diferentes especies de árboles en la parcela de menor altitud y mayor diversidad, esto representó menos de la mitad del número total de especies en el bosque a esa altitud. ¿Qué otras especies contiene el bosque en esta área? ¿Qué permite a las especies más comunes prosperar? ¿Cómo afectará el cambio climático a su estrategia?  ¿Cómo se comparará la respuesta del bosque al cambio climático con mis predicciones? ¿Difiere la adaptación en diferentes localidades dentro del bosque nublado? ¿Estas respuestas se corresponden con diferentes microclimas? ¿Cómo afectan otros aspectos del entorno del árbol, como el tipo de suelo y la pendiente, la adaptación del bosque?
Muchas de estas preguntas sólo son respondidas con un proyecto de investigación de largo tiempo. Recientemente he aprendido que mi trabajo será parte de eso. Fundación EcoMinga y el Instituto Nacional de Biodiversidad (INABIO) están comenzando un monitoreo colaborativo del bosque de larga duración. El estudio incluirá una red de parcelas en el bosque nublado ecuatoriano incluyendo mis tres, otras pocas existiendo parcelas en las reservas EcoMinga, y muchas mñas aún por establecerse. El crecimiento de árboles, clima y composición del bosque será monitoreada regularmente en estas áreas, y el dato de mi estudio en 2017-2018 será la línea base para la cual las futuras medidas de mis parcelas serán comparadas. Mientras EcoMinga e INABIO están determinando detalles, la investigación arrojará luz sobre muchas de las preguntas que ha producido mi estudio. En adición a proveer la linea base hay otras vías por las cuales puedo ayudar a avanzar este proyecto. Por ejemplo*, me esfuerzo por hacer que el código R (un programa estadístico) que estoy escribiendo analice mis propios datos facilmente reproducibles de modo que otros investigadores y estudiantes pueden usar para análisis rápidos de datos de todas las parcelas.
Puedo ayudar reclutando más estudiantes para continuar el estudio. Mucho trabajo empocionante falta por hacer. En adición a expander y monitorear mis parcelas, existen amplias oportunidades para personalizar el proyecto. Por ejemplo, tu (sí, tu!) puedes explorar usando imágenes de dron para identificar árboles desde el aire, investigar el rol de los ratones en la dispersión de semillas, estudiar la sincronización de la reproducción sexual de árboles (fenología), o mirar la genética de la diversidad de árboles de bosque nublado – y cómo cada uno de estos impacta la adaptación del bosque al cambio climático. Todas estas son áreas en las cuales EcoMinga trabaja normalmente o le gustaría adquirir. Cualquier interés que tengas, encontrarás científicos entusiastas en Ecuador para apoyarlo. Y si nada de esto te atrae pero conoces a otras personas a las que podría atraerles, envíales esta publicación.
Finalmente, podemos apoyar a EcoMinga, su trabajo conservando el bosque nublado, en asociación con El Placer, y colaboración científico con INABIO donando a la Fundación a través de la Alianza para la Conservación de Orquídeas (US), the World Land Trust (UK) y Rainforest Trust (US). (Asegurate de especificar que los fondos son de EcoMinga). Contacta a Lou Jost () para mas información sobre donaciones.
Gracias por leer! Si estás interesado en continuar este trabajo o en escuchar más acerca del mismo, por favor no dude en ponerse en contacto conmigo:

Lane Davis

lanedavis17@gmail.com

(404) 805-2234 (WhatsApp o iMessage sólo hasta que regrese a los EEUU en Mayo 11, 2018)

Las opiniones e información reportada aquí, son de mi propiedad y no representan aquellas de Fulbright Ecuador Commission, the Fulbright U.S. Student Program, o la U.S. Department of State.

Traducción: Salomé Solórzano Flores

 

Carnegie Airborne Observatory visits our area

mosaic

Carnegie Airborne Observatory image of rainforest trees; different colors represent different spectral fingerprints. Click picture to enlarge. Image: Carnegie Institution for Science.

The Carnegie Institution for Science is a unique private organization devoted to advanced study of the earth, life, and the universe. The pioneer cosmologist Edwin Hubble (“Hubble constant”), geologist Charles Richter (“Richter scale”), geneticist Barbara McClintock, and many Nobel laureates from several different disciplines are or were Carnegie investigators. The institution has instruments orbiting Mercury, is a lead partner in constructing the world’s biggest telescope in Chile, and has one of the world’s most sophisticated ecological monitoring devices, the Carnegie Aerial Observatory (CAO). This is a two-engine 20-passenger plane that Greg Asner and colleagues has fitted with millions of dollars worth of specially-designed lasers and spectrometers. It can sample hundreds of thousands of hectares of forest per day, using LIDAR to build a 3-dimensional model of the forest’s trees with 8 cm resolution. At the same time as it acquires LIDAR data, it also samples the spectral properties of light reflected from the vegetation, gathering reflectance information at hundreds of different wavelengths (colors). This spectral data gives information about the chemical and physical properties of the leaves, and also provides a spectral fingerprint that can later be matched to field-collected spectral fingerprints from known species of trees. Some  trees have such distinctive fingerprints that they can be identified to species with this data; more commonly, they can be identified to genus, though sometimes only to family. The detailed structural, chemical and taxonomic data acquired by the CAO would be impossible to gather at the landscape level by any other method, and Greg’s work is dramatically expanding the range of questions that ecologists can ask about forest ecosystems.

mos2

Carnegie aerial observatory rainforest image: 3-D Lidar combined with spectral signal. Image: Carnegie Institution for Science.

Last year Greg had planned to use our mosaic of forests as reference sites for a study of Andean forests on different geological substrates and elevations.  Greg and his partner Robin Martin visited our Rio Zunac Reserve, his flight plans got approved by the Ecuadorian authorities, and everything seemed ready to go, but in the end he was not allowed to bring the plane into the country. This year, however, Greg was able to bring the plane in for a more modest ten-day study of Amazonia. The plane’s home for those ten days was the military base in Shell, a town in the upper Rio Pastaza watershed near our Rio Anzu Reserve. One of the CAO’s flight transects covered a two-kilometer wide strip from west to east (high to low) through our area, perhaps including parts of up to four of our reserves. This will be a very valuable data set that will teach us a great deal about the structure and diversity of these forests. However, it will take about a year to fully process the data, so we’ll have to be patient.

img_6374sm

The Carnegie Airborne Observatory parked at the Shell military base. Our reserves are in the mountains in the background. Click picture to enlarge. Photo: Matt Scott.

The president of the Carnegie Institution for Science, Matt Scott, is a well-known geneticist and serious photographer. He came t0 Ecuador last month to fly with Greg, but first he wanted to visit some of our reserves. Our endangered Black-and-chestnut Eagles (Spizaetus isidori) were nesting again in our Rio Zunac Reserve after last year’s tragic nest failure, so this was a once-in-a-lifetime opportunity to observe the species as it went about its business.

I picked him up in the Quito airport. The trip from Quito to Banos was picturesque as always. The glacier of Cotopaxi was covered in a layer of fresh volcanic ash, and small puffs of ash and vapor were still rising up from the crater as we drove past it.

_mps4060sm

Cotopaxi’s glaciers covered in fresh ash. Click picture to enlarge. Photo: Matt Scott.

 

_mps4097sm

Close to sunset as we neared Banos after passing through a rainstorm. Click picture to enlarge. Photo: Matt Scott.

The next day we had an appointment with the Black-and-chestnut Eagles at 10am-11am. Our guards told us the parents  usually brought prey to the baby at that time, but were otherwise rarely seen around the nest. The nest is about 3-4 hours away from the road, after a forty minute drive from Banos, so we had to get up early and rush out there. It was hard to keep up  a good pace, since beautiful things kept distracting us. Still, we managed to get to the nest observation spot at almost exactly 11:00, and sure enough, there was the adult in the nest, along with the chick and something dead. The adult flew off almost immediately but shortly returned to feed on the prey item while the sated chick slept. The other adult was also nearby and both called frequently. We spent an hour watching them. It was a wonderful thing to see.

_mps7152sm

This was the view when Matt got to my house to start our trip to the Rio Zunac. Volcan Tungurahua with a lenticular cloud against a crystal sky, a great way to start the day. Click picture to enlarge. Photo: Matt Scott.


_mps7199sm

Morning fog over the Rio Pastaza. Click picture to enlarge. Photo: Matt Scott.


_mps7327

Black-and-chestnut Eagle (Spizaetus isidori) at its nest in our Rio Zunac Reserve. Photo: Matt Scott.


_1060613

We saw several Highland Motmots. Photo: Lou Jost/EcoMinga.


_mps7416sm

Torrent Ducks on the Rio Zunac distracted us throughout the day. Click picture to enlarge. Photo: Matt Scott.


_1060699

We found this crazy katydid at the end of our walk. Click picture to enlarge. Photo: Lou Jost/EcoMinga.


_1060734

Butterflies and hesperids taking salts from the sand along the Rio Zunac. Photo: Lou Jost/EcoMinga.


_mps7498sm

Matt chills out in the Rio Zunac after our hike. Click picture to enlarge. Photo: Lou Jost.

 

The next day we went to our Rio Anzu Reserve near the Shell airport and the CAO. That reserve is not very rich in big stuff, but there are so many interesting small things that it is hard to take ten steps without stopping for photos. We eventually got to the Rio Anzu river and the magnificent fossil-bearing limestone formations capped with ladyslipper orchids (Phragmipedium pearcei). Though it was getting late, Matt asked to stay longer. I always like to hear that from a visitor!!

_1060900

Matt photographing the limestone. Click picture to enlarge. Photo: Lou Jost/EcoMinga.


_mps7785sm

The limestone formations along the Rio Anzu, covered with orchids. Click picture to enlarge. Photo: Matt Scott.


_mps7804sm

Phragmipedium pearcei, a ladyslipper orchid, on the limestone. Click picture to enlarge. Photo: Matt Scott.


_mps7644

Riodinid butterfly in the Rio Anzu Reserve. Click picture to enlarge. Photo: Matt Scott.


_mps7946sm

Large hairy caterpillar. Click picture to enlarge. Photo: Matt Scott.


_mps7763sm

Me in bamboo forest along the Rio Anzu. Click picture to enlarge. Photo: Matt Scott.

Then we went to the military base to see the CAO. Security was tight and the military were not eager to let a pair of muddy rubber-booted gringos walk through their installations. Nevertheless we were able to talk our way through the multiple layers of officials who scrutinized us. But we didn’t want to ruffle any feathers so when we finally got to the plane, we just took a quick look at it and went back (still under military escort, but actually a very friendly one).

_mps7990sm

CAO at the military base. Click picture to enlarge. Photo: Matt Scott.

By the time we got to Greg and Robin’s hotel in nearby Puyo it was already dark. Greg was sitting at a table outside working on maps in his laptop, and he showed me the transects he had flown so far. I went back to Banos that night but Matt stayed and got to fly in the CAO over the following days. Lucky man!

img_6321sm

Matt (left) and Greg happy to be in the air. Click picture to enlarge. Photo: Matt Scott.


_mps8569sm

The Rio Pastaza broadens and meanders as it leaves our mountains and enters Amazonia. Click picture to enlarge. Photo: Matt Scott.

 

_mps8422sm

The Amazon basin from the CAO. Click picture to enlarge. Photo: Matt Scott.

 

img_6317sm

More of the Amazon basin from the CAO. Click picture to enlarge. Photo: Matt Scott.

Matt, thanks very much for your visit! It was an honor for us to show you our forests.

Lou Jost

Fundacion EcoMinga

 

 

El Observatorio Aerotransportado Carnegie visita nuestra área

 

IMG 01 – Imágenes del Observatorio Aerotransportado Carnegie de árboles de bosque lluvioso; diferentes colores representan diferentes firmas espectrales. Haga click en la imagen para agrandar.
 
El Instituto para la Ciencia Carnegie es una organización privada única dedicada al estudio avanzado de la tierra, la vida y el universo. El cosmólogo pionero Edwin Hubble (“constante de Hubble”), el geólogo Charles Ritcher (“Escala de Ritcher”), la genetista Bárbara McClintock y muchos otros premios Nobel de diversas disciplinas son o fueron investigadores de Carnegie. La institución tiene instrumentos orbitando Mercurio, es un patrocinador líder en la construcción del telescopio más grande del mundo  en Chile, y tiene uno de los más sofisticados dispositivos de monitoreo ecológico, el Observatorio Aéreo Carnegie (CAO). Este es un avión bimotor de veinte pasajeros que Greg Asner y sus colegas han adaptado con millones de dólares en láseres y espectrómetros especialmente diseñados. Puede muestrear cientos de miles de hectáreas de bosque por día, usando LIDAR para construir un modelo tridimensional de los árboles del bosque con 8 cm de resolución. Al mismo tiempo que adquiere datos LIDAR, también toma muestras de las propiedades espectrales de la luz reflejada por la vegetación, recolectando información de reflectancia en cientos de diferentes longitudes de onda (colores). Estos datos espectrales brindan información acerca de las propiedades físicas y químicas de las hojas, y también provee una firma espectral que puede ser después emparejada para las firmas espectrales colectadas en campo de especies de árboles conocidas. Algunos árboles tienen firmas distintivas que pueden ser identificadas a nivel de especies con estos datos; más comúnmente, ellos pueden identificar el género, aunque a veces solo a familia. Los datos estructurales, químicos y taxonómicos detallados obtenidos por la CAO serían imposibles de recopilar a nivel de paisaje por cualquier otro método, y el trabajo de Greg está ampliando drásticamente la gama de preguntas que los ecologistas pueden hacer acerca de los ecosistemas forestales. 
 
IMG 02 – Imagen del bosque lluvioso del Observatorio Aéreo Carnegie: Lidar 3-D combinado con la firma espectral. Imagen: Instituto para la ciencia Carnegie
 
El año anterior, Greg había planeado usar nuestro mosaico de bosques como sitios de referencia para un estudio de los bosques Andinos en diferentes sustratos geológicos y elevaciones. Greg y su compañero Robin Martin visitaron nuestra Reserva Río Zuñac, su vuelo planeaba ser aprobado por las autoridades ecuatorianas, y todo parecía estar listo para arrancar, pero al final no fue permitido traer el avión al país. Este año, de todos modos, Greg pudo traer el avión en un estudio más modesto de diez días de la Amazonía. El hogar del avión durante esos diez días fue la base militar en Shell, una ciudad en la cuenca alta del río Pastaza, cerca de nuestra Reserva Río Anzu. Uno de los transectos de vuelo de CAO cubrió una banda de dos kilómetros de ancho de este a oeste (alto a bajo) a través de nuestra área, quizás incluyendo partes de más de cuatro de nuestras reservas. Este será un conjunto de datos muy valioso que nos enseñará mucho acerca de la estructura y diversidad de estos bosques. De todos modos, tomará casi un año para procesar los datos completamente, así que tendremos que ser pacientes. 
 
IMG 03 – El Observatorio Aerotransportado Carnegie estacionado en la base militar de Shell. Nuestras reservas están en las montañas del fondo *del último plano*. Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
El presidente del Instituto para la Ciencia Carnegie, Matt Scott, es un genetista bien conocido y un fotógrafo serio. Él vino a Ecuador el mes anterior para volar con Greg, pero primero quiso visitar algunas de nuestras reservas. Nuestra Águila Andina (Black-and-chestnut Eagles / Spizaetus isidori) estaba anidando de nuevo en nuestra Reserva Río Zuñac después del trágico fracaso del nido del año pasado, así que esta fue una oportunidad única en la vida para observar la especie mientras realizaba sus actividades *mientras estaba en lo suyo*. 
 
Lo recogí del aeropuerto de Quito. El viaje de Quito a Baños fue pintoresco como siempre. El glaciar de Cotopaxi fue cubierto en una capa de fresca ceniza volcánica, y pequeñas bocanadas de ceniza y vapor todavía se elevaban desde el cráter cuando lo pasamos
 
IMG 04 – Glaciares del Cotopaxi cubiertos con ceniza reciente. Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
IMG 05 – Cerca de la puesta de sol a medida que nos acercábamos a Baños, después de pasar a través de una tormenta lluviosa. Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
Al siguiente día tuvimos una cita con el Águila Andina entre las 10 am y 11 am. Nuestros guardabosques nos dijeron que los padres usualmente traían presas al pichón a esa hora, pero de otra forma rara vez se veían alrededor del nido. El nido está a unas tres o cuatro horas de la carretera, después de un viaje de cuarenta minutos en coche desde Baños, así que tuvimos que levantarnos temprano y salir corriendo. Era difícil mantener un buen ritmo, ya que las cosas bonitas nos distraían. Aún así, logramos llegar al lugar de observación del nido casi exactamente a las 11:00 y, efectivamente, estaba el adulto en el nido, junto con el polluelo y con algo muerto. El adulto voló casi de inmediato, pero regreso prontamente para alimentarse de la presa mientras el polluelo dormía. El otro adulto también estaba cerca y ambos llamaban con frecuencia. Pasamos una hora mirándolos. Fue maravilloso de ver.
 
IMG 06 – Esta era la vista cuando Matt llegó a mi casa para comenzar nuestro viaje al Río Zuñac. El volcán Tungurahua con una nube lenticular contra un cielo cristalino, una excelente manera de comenzar el día. Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
IMG 07 – La niebla matutina sobre el Río Pastaza. Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
IMG 08 – Águila andina (Black-and-chestnut Eagles / Spizaetus isidori) en su nido en nuestra Reserva Río Zuñac. Fotografía: Matt Scott.
IMG 09 – Vimos bastantes Momotos montañeros (Highland Motmots / Momotus aequatorialis). Fotografía: Lou Jost / EcoMinga
 
IMG 10 – Patos torrenteros (Torrent Ducks / Merganetta armata) en Río Zuñac nos distrajeron a lo largo del día. Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
IMG 11 – Encontramos este loco saltamontes longicorno (katydid) al final de nuestra caminata. Haga click en la imagen para agrandar. Fotografía: Lou Jost / EcoMinga
 
IMG 12 – Mariposas y hespéridos tomando sales de la arena a lo largo del Río Zuñac. Fotografía: Lou Jost / EcoMinga
 
IMG 13 – Matt se relaja en el Río Zuñac después de nuestra caminata. Haga click en la imagen para agrandar. Fotografía: Lou Jost
 
Al día siguiente fuimos a nuestra Reserva Río Anzu cerca del aeropuerto de Shell y el CAO. Esa reserva no es muy rica en cosas grandes, pero hay tantas cosas pequeñas interesantes que es difícil dar diez pasos sin detenerse a tomar fotos. Finalmente llegamos al Río Anzu y las magníficas formaciones de piedra caliza con fósiles coronadas con orquídeas zapatito (Phragmipedium pearcei). Aunque se estaba haciendo tarde, Matt pidió quedarse más tiempo. ¡Siempre me gusta escuchar eso de un visitante!
 
IMG 14 – Matt fotografiando la piedra caliza. Haga click en la imagen para agrandar. Fotografía: Lou Jost / EcoMinga
 
IMG 15 – Las formaciones de piedra caliza a lo largo de Río Anzu, cubierto con orquídeas. Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
IMG 16 – Phragmipedium pearcei, una orquídea zapatito, en la piedra caliza. Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
IMG 17 – Mariposa Riodinida en la Reserva Río Anzu. Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
IMG 18 – Oruga de pelos largos.  Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
IMG 19 – Yo en el bosque de bambú a lo largo del Río Anzu.  Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
Entonces fuimos a la base militar para ver el CAO. La seguridad era estricta y los militares no estaban ansiosos por dejar que un par de gringos embarrados con botas de goma caminaran por sus instalaciones. Sin embargo, pudimos seguir nuestro camino a través de las múltiples capas de funcionarios que nos escudriñaron. Pero no queríamos agitaragitar el gallinero, así que cuando finalmente llegamos al avión, le echamos un rápido vistazo y regresamos (todavía bajo la escolta militar, pero muy amistosa en realidad)
 
IMG 20 – CAO en la base militar.  Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
Cuando llegamos al hotel de Greg y Robin en el cercano Puyo, ya estaba oscuro. Greg estaba sentado en una mesa fuera trabajando en mapas en su computadora portátil, y me mostró los transectos que había volado hasta ese momento. Volví a Baños esa noche, pero Matt se quedó y pudo volar en el CAO durante los días siguientes. ¡Hombre con suerte!
 
IMG 21 – Matt (izquierda) y Greg felices de estar en el aire. Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
IMG 22 – El Río Pastaza se ensancha y serpentea al dejar nuestras montañas y entrar en la Amazonía. Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
IMG 23 – La cuenca amazónica desde el CAO. Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
IMG 24 – Más de la cuenca amazónica desde el CAO. Haga click en la imagen para agrandar. Fotografía: Matt Scott.
 
Matt, ¡muchas gracias por tu visita! Fue un honor para nosotros mostrarles nuestros bosques
 
Lou Jost, Fundación EcoMinga
Traducción: Salomé Solórzano Flores