A new orchid from our Dracula Reserve, Lepanthes tulcanensis


Lepanthes tulcanensis, a new species named after the township that contains most of our Dracula Reserve. Click image to enlarge.  Photo: Marco Monteros.

Yesterday the scientific journal Lankesteriana published the scientific description  of another new orchid species from our Dracula Reserve. The authors and discoverers of the new species are our long-time collaborators Luis Baquero (Universidad de las Americas, Quito) and Marco Monteros (EcoMinga):

A new tall and exceptional species of Lepanthes from north-west Ecuador (Orchidaceae: Pleurothallidinae)

Click to access 04.%20Baquero%20et%20Monteros%202020.pdf

The new orchid is in the genus Lepanthes, one of the most diverse genera of flowering plants in the world, with over a thousand species, all in Latin America. Ecuador alone has more than 300 species of Lepanthes. Members of this genus often have very small ranges and seem very fussy about where they grow. They are therefore very useful indicator species of unusual microclimates, or places with unusual biogeographical histories. New Lepanthes had been coming out of what is now the Dracula Reserve for many years, indicating that this was an unusual area, and this latest discovery, along with several others in the process of description, show that we have not reached the end of the surprises here. This particular species is quite an unusual one with several unique features, as explained in the article linked above.


Lepanthes tulcanensis in its habitat. Click image to enlarge. Photo: Marco Monteros.


The authors named the new species after Tulcan, the township that includes much of the Dracula Reserve. This township has been very supportive of our conservation efforts, and it is appropriate that Tulcan should be honored in this way. We hope that this will increase local awareness of the uniqueness of these forests, and maybe even promote a sense of pride in the nature that surrounds the town.

Congratulations to Lucho y Marco for this exciting discovery!


Lepanthes tulcanensis. Photo: Marco Montero.

Lou Jost, Fundacion EcoMinga

Una nueva orquídea de nuestra Reserva Drácula, Lepanthes tulcanensis


IMG 01 – Lepanthes tulcanensis, una nueva especie nombrada en honor al pueblo que contiene la mayoría de la reserva Drácula. Click en la imagen para agrandar. Fotografía: Marco Monteros
Ayer la revista científica Lankesteriana publicó la descripción científica de otra nueva especie de orquídea de nuestra Reserva Drácula. Los autores y descubridores de la nueva especie son nuestro colaborador de largo tiempo, Luis Baquero (Universidad de las Américas, Quito) y Marco Monteros (EcoMinga).
La nueva orquídea está en el género Lepanthes, uno de los géneros más diversos de plantas con flor en el mundo, con más de mil especies, todas en Latinoamérica. Solo Ecuador tiene más de 300 especies de Lepanthes. Miembros de este género a menudo tienen rangos de distribución muy estrechos y parecen ser muy quisquillosos con respecto a dónde crecen. Por lo tanto, son especies indicadoras muy útiles de microclimas inusuales o lugares con historias biogeográficas inusuales. Las nuevas Lepanthes han estado saliendo de lo que hoy es la Reserva Drácula por muchos años, indicando que se trataba de un área inusual, y este último descubrimiento, junto con varios otros en proceso de descripción, muestran que no hemos alcanzado el final de las sorpresas aquí. Esta especie en particular es muy inusual con varias características únicas, como se explica en el artículo vinculado anteriormente.
IMG 02-Lepanthes tulcanensis en su hábitat. Click en la imagen para agrandar.
Los autores nombraron la nueva especie en honor a Tulcán, el municipio que incluye gran parte de la Reserva Drácula. El municipio ha apoyado mucho en nuestros esfuerzos de conservación, y es apropiado que Tulcán sea honrado de esta manera. Esperamos que esto incremente la conciencia local sobre la singularidad de estos bosques y tal vez incluso promueva un sentido orgullo por la naturaleza que rodea la ciudad.
Felicidades a Lucho y Marco por este emocionante descubrimiento
IMG 03 – Lepanthes tulcanensis. Fotografía: Marco Montero
Lou Jost, Fundación EcoMinga
Traducción: Salomé Solórzano Flores

New orchids: Scaphosepalum zieglerae


Scaphosepalum zieglerae, a new species of orchid discovered in the Dracula Reserve. Photo: Luis Baquero.

Our Dracula Reserve in northwest Ecuador has an exceptionally rich, highly endemic, but poorly known flora which still contains many surprises for biologists. Orchid expert Luis Baquero (Jardin Botanico de Quito, Universidad de Las Americas), has been exploring this region for many years, sponsored in part by the Quito Orchid Society, and he recently discovered several new species in and around our reserve. I’ll feature them in the next few blog posts.

Members of the orchid genus Scaphosepalum have strange flowers that look like the heads of horned animals. There are two upper horns that point sideways, and a lower horn that points forward and upward. These horns are actually extensions of the three sepals, which are more or less united at their bases to form an enclosure for the small but complex lip.

The Dracula Reserve and the surrounding forests are home to many species of Scaphosepalum, some of which are very hard to distinguish because of their natural variability and perhaps some occasional hybridization. Luis has found one ridge that has up to seven species of Scaphosepalum! One of these species turned out to be new to science, and Luis recently published its description in the botanical journal Lankesteriana. He named it Scaphosepalum zieglerae, after Susann Ziegler Annen of Basel, Switzerland, who together with her husband Max have been major supports of our Dracula Reserve project, through the University of Basel Botanical Garden. (The University of Basel Botanical Garden provided the initial funding and support to start this reserve.) The new orchid discovery got national attention.

We are currently raising funds to buy the ridge that contains this and other Scaphosepalum species, along with many other rare orchids. The ridge connects two of our Dracula Reserve units, Cerro Colorado and Cerro Oscuro, and is a rare example of lower-elevation ridge line habitat, most of which has been turned into pastures elsewhere in the region. Donors should contact the Orchid Conservation Alliance; all fund they receive will be matched 1:1 by the Rainforest Trust.


Another Scaphosepalum species from our Dracula Reserve, S. gibberosum. Photo: Lou Jost/EcoMinga.

For more info on our Dracula Reserve, please check out this link and search for {EcoMinga  “Dracula Reserve”} and see this link.

Lou Jost, Fundacion EcoMinga










Ladyslippers 1: Biology


Critically endangered Phragmipedium fischeri in northwest Ecuador near our Dracula Reserve. Click this and any other photo to enlarge. Photo: Luis Baquero and Gabriel Iturralde.

The ladyslipper orchids are among the most distinctive and beloved plants in the world. They are an ancient group, diverging from the other orchids while dinosaurs still walked among them. But today their beautiful intricate flowers have been their undoing, as plant collectors combine with habitat destruction drive them to extinction around the world. A  recent effort by Kew Gardens to assess their conservation status worldwide has shown that 79% of the world’s slipper orchid species are either vulnerable or endangered. Though slipper orchids make up less than 2% of all orchid species, they include 37% of all critically endangered orchids.

Slipper orchids are especially vulnerable to overcollection and habitat destruction because most species have specific soil and moisture requirements. Extreme soils with very high or very low pH values are favored, and many species require constant moisture. Habitat for most species is therefore scarce and patchy even in undisturbed areas. It doesn’t take much disturbance to make these populations disappear.

The ladyslippers are instantly recognizable by their pouched flowers. Insects enter the wide mouth of the pouch and then find themselves trapped inside. The inner surfaces of the pouch are mostly smooth but there is usually a ladder made of hairs on itsinside back surface. The insect climbs this ladder, passing under the flower’s stigma and then under one of its anthers in order to escape out one of the two openings at the top of the tube. If the insect is the right size, it rubs against both the stigma and the anther as it escapes, pollinating the flower if the insect already had pollen on its back from another ladyslipper flower. The escape path is clear in this cutaway view of Phragmipedium pearcei, the slipper orchid which grows in our Rio Anzu Reserve.


Top view of the “slipper” or lip of the ladyslipper orchid Phragmipedium pearcei. Lou Jost/EcoMinga.

A cross-section view of the "slipper". Lou Jost/EcoMinga.

A cross-section view of the “slipper” of Phrag. pearcei. Lou Jost/EcoMinga.


Cutaway view of Phrag. hirtzii. Photo: Luis Baquero and Gabriel Iturralde.

Slipper orchids have a wide variety of tricks to entice insects into their traps. Some of the most surprising tricks have only been discovered in the last few years. I’ll discuss these below as I survey the different genera of slipper orchids; we’ll see how some of these tricks have arisen independently in slipper orchids on opposite sides of the world.


Cypripedium parviflorum. Photo: Lou Jost.

Many readers will be familiar with the temperate zone ladyslippers, genus Cypripedium, found throughout North America, Europe, and temperate Asia. These include the familiar Pink Ladyslipper and Yellow Ladyslipper of the US and Canada. Genetic analysis shows that this genus is the oldest branch in the ladyslipper family tree. These orchids have thin oval leaves with prominent parallel veins, a trait they share with the next-oldest branch of slipper orchids, the genus Selenipedium, which are today found only in small scattered populations in tropical and subtropical Latin America. The common ancestor of the ladyslippers probably had leaves similar to these.


Cypripedium acaule. Photo Paul Jost.

Cypripedium and Selenipedium, like most slipper orchids, are usually pollinated by bees, wasps, or flies. Some Cypripedium ladyslippers with large slits or openings in their pouches, like the Pink Ladyslipper of the US (C. acaule, above), are pollinated by large queen Bombus bees (see Davis 1986 for observations of Pink Ladyslipper pollination). Cypripedium tibeticum in China (see photo below) is pollinated by queen bees that are not carrying provisions for their young, indicating that they had not yet established a nest. Scientists suspect that the pouch in this species imitates a mouse hole, where queen bees usually build their nests (Pemberton 2014). Several other Cypripedium species have similar morphologies so this might be a more common strategy than people have realized. Even the Pink Ladyslipper may fall into this category, though most previous workers have interpreted them as food-deceit flowers.


Flowers of Cypripedium tibeticum attract queen bees looking for nesting sites. Photo: Wikipedia.

Many Cypripedium species, especially the Chinese species, have very unusual flower morphologies that hint at strange new pollination syndromes. Perhaps the most surprising pollination strategy was recently discovered in the endangered Chinese Cypripedium fargesii. The leaves of this species are spotted blackish green, and each spot has a darker black center. They look exactly like the spots on plant leaves infected by certain fungi. The C. fargesii flower and freckled foliage fool a fly that feeds on the spores of this fungus. It falls into the trap and fertilizes the flower. Full details in “Flowers of Cypripedium fargesii (Orchidaceae) fool flat-footed flies (Platypezidae) by faking fungus-infected foliage”


Cypripedium fargesii has black-spotted leaves which attract fungus-feeding flies. Photo: Wikipedia.

Besides these genera of slipper orchids with thin leaves showing prominent parallel ridges and valleys (“plicate-leaved” genera), there are three genera of slipper orchids with thick smooth leathery leaves whose veins (except for a sharp midvein where the leaf is folded) are not visible (“conduplicate-leaved” genera). These are the Asian genus Paphiopedilum and the closely-related Latin American genera Phragmipedium and Mexipedium. These three genera share a common ancestor that diverged from the plicate-leaved Cypripedium and Selenipedium about 60 million years ago; the New and Old World conduplicate-leaved slipper orchids diverged from each other around 23 million years ago. Some of the species in these genera have evolved pollination strategies similar to those of Cypripedium, but many of them have evolved novel strategies that have no parallel in the temperate zone.

I’ve written once before about the pollination strategy of Phragmipedium pearcei in our Rio Anzu Reserve. The pouch has white flaps at the top, and these are dotted with little fake green aphids and some light brown blobs that might be fake aphid wings. Female hoverflies hunt aphid colonies and lay their eggs on them; their larvae will devour the aphids. These hoverflies try to lay their eggs on the fake aphids and bounce off the white flaps into the open pouch (Pemberton 2014), where they are manipulated by the orchid, effecting pollination (see photos of this species at the beginning of this post).


Phragmipedium pearcei has green fake aphids on the white flaps at the top of its pouch. Syrphid flies have larvae that eat aphids, so the females land on the lip to lay eggs in the fake aphid colony. When they land they slipo and fall into the pouch. Photo: Nigel Simpson.


The staminode above the “slipper” or lip of Phrag. pearcei. At this magnification the green spots on the lip begin to show their true complexity. Lou Jost/EcoMinga.

Many other tropical American Phragmipedium species have these same green dots and are certainly pollinated in the same way. Our Ecuadorian Phrag. boisserianum, Phrag. caudatum, Phrag. longifolium (which grows in our Dracula Reserve), and Phrag. wallisii, among others, belong to this group. Perhaps the endangered Phrag. hirtzii (which might also grow in our Dracula Reserve) has a similar strategy.


Phrag. boisserianum (var. czerwiakowianum?) Photo: Lou Jost.


Phrag. hirtzii. Photo: Luis Baquero and Gabriel Iturralde.

Curiously the Old World genus Paphiopedilum also has many species with a broadly similar floral structure. Some of them, like Paph. venustum below, have some raised shiny yellow dots on the upper flaps of the pouch, and these may imitate scale insects. The green-spotted staminode (the top flap that covers the anther and stigma) may also be imitating aphids.


Paph. venustum. Photo: Lou Jost.


Paph. venustum. Photo: Lou Jost.



Paph. venustum pouch detail. Photo: Lou Jost.

Likewise there are both New World Phragmipedium species and Old World Paphiopedilum species that have evolved another flower form, round-petalled white and pink flowers with yellow staminodes whose function is not yet understood. Phragmipedium schlimii and the critically endangered Phrag. fischeri are two Ecuadorian examples of this syndrome. The critically endangered Asian Paphiopedilum delenatii has evolved a strikingly similar flower. The North American Cypripedium reginae flower is also broadly similar. Maybe they all share a common strategy, perhaps luring bees looking for food, but we don’t really know.


Phragmipedium schlimii. Photo: Lou Jost.


Phrag. fischeri. Photo: Luis Baquero and Gabriel Iturralde.


Critically endangered Asian Paphiopedilum delanatii has the same general pattern as American Phragmipedium fischeri and Phrag, schlimmii. Photo: Lou Jost.

Cypripedium reginae of North America shares the same pattern as Asian Paphiopedilum delenatii and South American Phragmipedium schlimii and Phrag. fischeri. Photo: WIkipedia.


Ecuadorian and Peruvian Phragmipedium bessae is the most brilliantly-colored slipper orchid. Photo: Lou Jost.

The brightly-colored Phragmipedium bessae from southern Ecuador and northern Peru breaks all the rules for this genus. Early speculations about its pollinator (butterflies and hummingbirds were suggested) were poorly concieved and completely wrong. Sometimes our imagination is just too limited. Also, it is difficult for us to take into account the huge differences between insect color vision and our own. It now appears that this bright Phragmipedium attracts a wasp that parasitizes larvae of large beetles (Pemberton 2014). No one has any idea why they are attracted to this flower, though. We also do not know what pollinates the newly discovered Phragmipedium kovachii, the largest and most spectacular member of the genus, which has already been ruthlessly stripped from almost all accessible sites in its limited range in northern Peru.


This is a cultivated hybrid of Phrag. schlimmii and Phrag. kovachii. Photo: Lou Jost.

There is one oddball Phragmipedium, quite common on rocky outcrops near our Banos-area reserves, which is self-pollinated. This species is derived from something like Phrag. wallisii or Phrag. caudatum, which are similar to our Phrag. pearcei but with much longer petals that hang down to the ground. In Phrag. lindenii a mutation has affected the symmetry of the flower. The pouch was converted to an ordinary petal like the other two (the pouch is also a petal, but a highly modified one). In a normal Phragmipedium there is an anther at the base of each of the two normal petals. The mutation in Phrag. lindenii not only adds a third normal petal, it also adds an anther at its base, as in the other two petals. But this third anther grows directly into the stigma, thus fertilizing the flower automatically. Every flower always sets seed. This is a very successful short-term strategy compared to the normal strategy of waiting to attract and fool a pollinator. Most normal slipper orchid flowers rarely set seed.


Phragmipedium lindenii in the upper Rio Pastaza watershed. Photo: Lou Jost.


View of Phrag. lindenii with left petal removed., The left anther and the mutant third anther are visible.; the latter grows directly into the stigma, fertilizing the flower. Photo: Lou Jost.


Phragmipedium lindenii. Painting by Lou Jost.

The ancestor of Phragmipedium lindenii was similar to this Phragmipedium caudatum. Photo: Wikipedia.

The ancestor of Phragmipedium lindenii was similar to this Phragmipedium caudatum. Photo: Wikipedia.

So why aren’t all slipper orchids self-pollinating? Cross-pollination can quickly spread beneficial mutations throughout a population, and can bring together different favorable mutations that arose in different individuals, so a cross-pollinating species will be able to adapt to changing conditions more rapidly than a strictly self-pollinating species. So perhaps these self-pollinating species briefly burst onto the scene and then disappear, while cross-pollinating species have long runs.

The Asian Paphiopedilum slipper orchids are very diverse, and many of them have flowers whose pollinators are complete mysteries. Here are some:


Paphiopedilum argus. Photo: Wikipedia.


Critically endangered Paphiopedilum rothschildianum. Photo: Wikipedia.


Critically endangered Paphiopedilum micranthum. Photo: Wikipedia.


Paph. hookerii. Photo: Wikipedia.


Critically endangered Paph. dayanum. Photo: Wikipedia.


Paphiopedilum charlesworthii. Photo: Wikipedia.


Paphiopedilum bullenianum. Photo: Wikipedia.


Paphiopedilum armeniacum. Photo: Wikipedia.


Paphiopedilum acmodontum. Photo: Wikipedia.

It is easy to see why people fall in love with these amazing plants and become passionate about them. I still remember being entranced when, as a teenager, I found my first wild ladyslippers in Wisconsin. That passion people to try to protect wild populations. Some of the strongest support for our foundation’s efforts to conserve wild orchids comes from people who genuinely love these plants and who grow them responsibly.The Orchid Conservation Alliance is a great example of this. The Slipper Orchid Alliance, the Quito Orchid Society, and the Quito Botanical Garden are other groups with members who are passionate about conserving orchids in the wild and who have helped us do our conservation work.

Remember, horticulturalists who really love these plants make sure they only buy laboratory-grown individuals!

In Part 2 of this series we will announce our plan to protect some of Ecuador’s most endangered slipper orchids.

Lou Jost, EcoMinga Foundation




New plant genus established for one of our rare orchid species!!

Limestone canyon of the Rio Anzu.

Our Rio Anzu Reserve in the Amazonian foothills near Mera, Ecuador, protects a special forest growing on limestone outcrops. These outcrops are usual in this part of Amazonia, and the unusual geology (combined with an unusually wet climate) had led to the evolution of special plants that are restricted to this habitat. About fifty plant species known only from the area around Mera and nowhere else in the world!

One of the most unusual plants of the Rio Anzu is a small orchid I had found several years ago in the area. Usually the first step to identifying an orchid species is to figure out its genus. But I could not get past this first step; it had traits that didn’t match any known genus of orchids. Eventually I showed it to a visiting orchid scientist from Mexico, Gerardo Salazar, who specializes in the taxonomy and evolution of the large group of orchid genera most closely related to this one (genera in the subtribe Spiranthinae). He was also puzzled by it. He did some research and discovered that the species had in fact been named previously, as “Spiranthes glabrescens“, based on a plant found in Peru. It was interesting to find that this plant had been seen a thousand kilometers away in Peru, but it was only known in Peru from that original discovery (made in the 1970’s) and one recent collection, and it had never been seen in Ecuador prior to my discovery of it in the Rio Anzu area. It was clearly a very rare plant. However, we felt sure that “Spiranthes glabrescens” could not really belong to the genus Spiranthes. For one thing, the flowers were “upside down” (non-resupinate) compared to all other Spiranthes species, and the leaves, roots, and pollen were also different.

New orchid genus, Quechua.

Quechua, a new genus of orchids established for one of the special plant species protected by our Rio Anzu Reserve.

A few decades ago taxonomists would have argued endlessly about the proper genus for a given plant species. The decision to place an unusual plant in one genus instead of another often seemed like a judgement call, with no way to judge who had the correct answer (the correct answer being the one which matched the evolutionary history of the species and its relatives). DNA analysis changed all that. Now we can learn something about the evolutionary history of a species by seeing how much its non-coding DNA (which tends to accumulate mutations at a constant rate, unaffected by natural selection) differs from its relatives.

Gerardo did that, and confirmed that this plant was not very closely related to the other species in the genus Spiranthes, and in fact did not group itself with any other of the known genera either. This confirmed what we could also observe with our naked eyes–this plant belonged in its own genus. Gerardo suggested the name “Quechua“, after the language of the major Peruvian and Ecuadorian indigenous groups. By the rules of plant taxonomy, the old species name had to stick with the plant, so our unusual orchid became “Quechua glabrescens“. Our scientific description of the genus was recently published as “Quechua, a New Monotypic Genus of Andean Spiranthinae (Orchidaceae)”, Gerardo Salazar and Lou Jost, p. 78-86 in Volume 37, Jan.-March 2012, of the journal Systematic Botany. Interested readers can get a copy from me.

Lou Jost